USDA / Good Natured Family Farms
Group GAP Pilot Project
Report and Assessment
December 2012
Preface

The growing demand for local and regional food offers an unprecedented market opportunity for sustainable small and midsized farms and holds great promise for increasing the access to healthy and affordable food for those that experience limited access. However, participation in the chain of supply demands that farms demonstrate effective compliance with complex, and, for the small growers, often expensive food safety practices that have evolved in response to public health challenges largely attributed to the industrial food supply chain. This requirement threatens to exclude the very farmers best suited to meet demand for local and regional food.

Internationally, similar market access issues have been addressed most effectively through the development of a group food safety certification process in which a “recognized entity” maintains an internal quality management system designed to implement, monitor, and ultimately assure implementation of GAP (Good Agricultural Practices) among member farms. This system is then externally audited by a trusted third party in order to assure buyers that their food safety requirements are being met by individual member farms.

The development and evolution of food hubs, innovative businesses whose role is to mediate between small- and mid-scale farmer needs and those of buyers, including larger institutional, retail, and food service buyers, has showcased the need for a similar approach here in the United States.

Key stakeholders including the Wallace Center at Winrock International, the W. K. Kellogg Foundation (WKKF), and the US Department of Agriculture Agricultural Marketing Service (USDA AMS) have been, and continue to be involved in the project. In the 2011 growing season, the USDA AMS initiated a feasibility study in cooperation with the Missouri-based Good Natured Family Farms, currently a WKKF grantee. The goal of this pilot was to assess the viability of group GAP certification in the US. As a technical assistance provider to WKKF’s grantees, the Wallace Center produced this paper to share the experiences and lessons from the pilot with a broad audience, and to clarify the next steps needed to develop a domestic group GAP standard. Based on the successes of the pilot, the Wallace Center continues to collaborate with these and other partners along the path toward realizing this goal.

This report is based on research, interviews, and findings from a pilot project analysis carried out in August 2012 by the National Good Food Network Food Safety Coordinator Steve Warshawer, with project assistance from Alexis Luckey. Primary funding for this report was provided by the W.K. Kellogg Foundation, with additional support from the Wallace Center, The Kresge Foundation and Surdna Foundation.

Please direct questions or inquiries to contact@foodhub.info
Table of Contents

Preface ... 2
Executive Summary .. 4
Introduction ... 6
Background ... 8
 GlobalGAP .. 8
 GlobalGAP Option 2 ... 8
 USDA GAP History .. 9
Good Natured Family Farms History .. 10
USDA Group GAP Pilot Project .. 11
Group GAP Implementation Guide and Assessment Tool ... 13
Key Lessons .. 34
Next Steps and Recommendations .. 35
Additional Resources .. 38
Appendices .. 40
Executive Summary

In order to protect public health and sustain public confidence in the distribution-based food system, produce buyers, including retail, food service, and government agencies, have increasingly demanded demonstration of Good Agricultural Practices (GAP) compliance from grower suppliers through third party verification programs and audits. This market requirement presents significant obstacles to individual small and mid-scale operations due to simple issues of scale. The smaller the entity the more costly these requirements in comparison to volume of sales. To help address the negative impact of this market requirement on small and mid-sized operations, a number of different resources and strategies are being developed and perfected.

One of the most important strategies to emerge from worldwide efforts to address market requirements for third party GAP verification is the cooperative or “group approach” to food safety, based on the Quality Management System (QMS) methodology of ISO 9000, in which a group of farms develop shared standard quality and operating procedures and are audited as one body. GlobalGAP’s Option 2 certification offers an existing framework of best practices for the group approach, initiated and improved in the global context. Within domestic trade, however, despite advantages demonstrated globally for small farms, there has been limited receptiveness.

Recognizing the possibilities offered by the group approach to GAP, and wanting to assess its feasibility, USDA AMS solicited the partnership of Good Natured Family Farms (GNFF), in Kansas City, Missouri, to participate in a pilot project started in late 2010, to convert its individual farm GAP program to the Group approach. In the last two years, the USDA AMS Group GAP pilot project with GNFF has satisfied GNFF and USDA AMS that this approach is feasible, and wishes to make significant strides in building a USDA group certification option for GAP certification. The goal of this program is to develop a credible group certification system that will make it attractive to all members of the produce supply chain, from farmers to aggregators and distributors to retail and food service buyers. However additional pilots assessing it feasibility looking at other types of groups is necessary.

There are a number of parties interested in the development of a USDA-AMS Group Certification option for GAP certification, and as a result these parties have met to continue the initial work USDA-AMS conducted and bring additional resources to the table which will allow for a fully functional, robust group certification program within the US. Through the Implementation Guide and Assessment Tool, this report describes the critical steps involved in successfully implementing a group certification system. Additionally, this report identifies the areas in which there is work yet to be done by those involved in the pilot project as well as by future groups working to meet GAP requirements. These implementation progress factors provide a roadmap for future groups as they make choices about how to implement the group approach in the context of their own farm group.

A number of lessons learned are outlined in the Group GAP certification process piloted by GNFF and USDA AMS that will need to be applied and addressed as part of this approach before Group GAP can be in the supply chain as a working, market ready system.
The learning and indicated next steps can be best pursued through the engagement of a small number of additional pilot projects to be initiated in 2013. Farm groups will need technical assistance, financial assistance, and an accepted template for QMS development. The shape, scope and availability of food safety training, for both farmers and internal (to the groups) inspectors and auditors, will become better defined through additional pilots. As more groups engage the group approach, there will be an increasing need for an IT system to be developed to post internal audits and related information so that buyers can be satisfied that their compliance concerns have been addressed. The system will need an external or at least an objective program to provide a process for addressing complaints and concerns, and to maintain the integrity of the Group certification process.

Over time better and best practices will emerge that demonstrate the merits of the group approach to GAP certification. These will need to be documented and made available to U.S. farmers. Collaboration of multiple entities, agencies, and stakeholders will be needed to support the continuing development and eventual availability in the market of the USDA AMS Group GAP certification.
Introduction

Food safety presents a dynamic and complex set of challenges for farmers, distributors, and non-profits involved in the rapidly growing local and regional food sector. They face new processes and requirements, and increasing scrutiny accelerated by consumer concerns, conflicting supply chain buyer expectations, and the integration of emerging federal, state, and local regulations. The efficacy with which these actors build capacity and respond to the demands of the changing food safety environment is likely to be a significant factor in assuring the continued growth and effectiveness of local and regional food supply chains.

In order to protect public health and sustain public confidence in the distribution-based food system, produce buyers, including retail, food service, and government agencies, have increasingly demanded demonstration of Good Agricultural Practices (GAP) compliance from grower suppliers. Although these requirements emerged in response to risks and incidents largely identified in the supply chains of the global food system, the expectation of supplier compliance has not lessened for local and regional food system suppliers. Over time, supply chain buyers have abandoned their own verification programs and transitioned toward third-party verification through audits and certification. This transition has been burdensome for farms because requirements of different buyers are often out of sync, costly, redundant, and, at times, at odds with desirable public health and environmental outcomes. This trend has led to a number of initiatives, some global and some domestic, to assure consistency in implementation of food safety and GAP. In the U.S., the creation of a Harmonized GAP standard is emerging as a focal point of voluntary GAP activity in the supply chain.¹

The leading organization in global development and implementation of GAP standards, GlobalGAP, has provided a unique model for auditing and certification with particular applicability to local (generally small and mid-scale) and regional growers and suppliers. A worldwide non-profit, founded in 1996 by European retailers after the BSE (bovine spongiform encephalopathy, known as mad cow disease) outbreak in the United Kingdom, GlobalGAP (originally named EurepGAP) quickly evolved into a multi-stakeholder organization that tackles verification and assurance of GAP through maintenance of its own standard, which is administered by independent certification bodies worldwide.

One of the most important concepts to emerge from GlobalGAP is the cooperative or “group approach” to food safety, based on the Quality Management System (QMS) methodology of ISO 9000,² in which a group of farms develop shared standard quality and operating procedures and are audited as one body. From the outset, GlobalGAP founders recognized the need to protect small farm enterprises, especially those in emerging market countries, from burdensome compliance requirements, without compromising the quality and competency of GAP implementation on the farms themselves. GlobalGAP’s group approach to certification, called

¹ For more on the GAP Harmonization Initiative, see: <http://www.unitedfresh.org/newsviews/gap_harmonization GAP>.
² ISO 9000 is a set of standards published by the International Organization of Standardization. It defines quality management systems for organizations that must ensure that they meet the requirements of stakeholders, customers, and regulators.
“Option 2,” has been tested around the world; it has been found to meet buyer expectations and deliver value at the farm level so effectively that farms are increasingly becoming Option 2 Certified. In 2011, 70 percent of GlobalGAP-certified farms were Option 2 participants.\(^3\)

In the U.S., voluntary GAP audit and verification efforts for small and mid-scale farms have been largely led by USDA’s Agricultural Marketing Service (AMS), which in 2002 developed a standard and auditing capability performed on a fee for service basis, like those offered by private auditors and certifiers. The GAP services provided by USDA AMS have become the point of entry to GAP for most small farmers and local and regional supply chain players, including limited-resource and socially disadvantaged farmers, and their supply chain partners. U.S. implementation of the GlobalGAP group approach has been focused in the Pacific Northwest, where tree fruit producers and cooperatives found it to be effective in entering the global supply chain. Within domestic trade, however, the group approach has thus far found limited receptivity despite globally demonstrated advantages for small farms. Within this context, USDA AMS solicited the partnership of Good Natured Family Farms (GNFF), in Kansas City, Missouri, to participate in a pilot project, started in late 2010, to explore Group GAP potential in the U.S.

GNFF was one of the first U.S. local food aggregation and distribution organizations to recognize the importance of GAP in addressing buyer concerns and building access to new local and regional markets for small and mid-sized farm and food producers. The group began introducing GAP to its farmers in 2007 and since that time successfully built a number of supply chain partnerships strengthened by its commitment to GAP and on-farm food-safety capacity building.

This report documents the Group GAP pilot project and GNFF’s progress in implementing the group approach. A set of comparative tools is provided as a guide, outlining the elements of a Group GAP program and summarizing and evaluating GNFF’s steps toward meeting these elements. A critical component of the Group GAP implementation process is the development of a Quality Management System (QMS) manual that documents procedures and standards. This report outlines the GNFF QMS manual and offers a chart comparing it with others implementing the same approach, internationally and in the Pacific Northwest. These comparative tools offer a summary of the process and an assessment of GNFF’s progress implementing the Group GAP approach. Based on these findings, recommendations are presented for GNFF and other group certification programs moving forward. Additionally, many resources and links on the group approach are provided to assist those forming a new group, or converting an existing network to the group approach. In this way, the report is intended to be useful to any supply chain player with an interest in furthering development of local and regional food systems while supporting GAP and other best practices, current and emerging, that advance positive public health outcomes, conservation, and economic and cultural sustainability while maintaining accepted food safety and handling standards.

\(^3\) GlobalGAP Corporate Brochure, February 2012.
Background

GlobalGAP
Around the world, as retailers and consumers have become increasingly aware of environmental, food safety, and social issues relevant to agricultural production, demand has grown for public and private standards of compliance. In 1996, amid public fears of the highly publicized BSE outbreak, a collaboration of European buyers formed GlobalGAP (originally called EurepGAP), in hopes of increasing public confidence in the safety of the food they sold through a fair and equitably administered voluntary program of Good Agricultural Practices.

While GlobalGAP’s program at first focused first on pesticide residue levels in produce and animal welfare in livestock, it quickly expanded its focus to include microbial food safety. Over time the buyer collaboration evolved into a true partnership among buyers, producers, and NGOs across the globe. GlobalGAP also expanded its scope to address social responsibility issues, through programs such as GlobalGAP Risk Assessment on Social Practices (GRASP), which focuses specifically on worker health and safety. Changing its name from EurepGAP to GlobalGAP in 2007, in acknowledgement of its global reach and scope, the organization has become the most recognized international standard, defining a minimum market-entry requirement for many large retailers.

GlobalGAP Option 2
For often marginalized smallholder farmers, GlobalGAP certification provides both an opportunity—point of entry into the global supply chain—and a challenge, to meet certification demands despite limited access to resources. It was immediately evident to GlobalGAP initiators that a fair and equitable program of good agricultural practices could not depend on a strict, one farm—one field—one audit approach. They recognized the importance of marketing groups and other types of associations formed by farmers to gain access to resources otherwise available only to larger entities. GlobalGAP recognized the importance of collaboration among smallholders, and the opportunity afforded by such collaboration to raise the standards of operations clear to the individual farm level. They therefore placed major emphasis on developing a “group certification approach” called “Option 2.” The functions and relationships necessary to fulfill Option 2 requirements are depicted in a generic model, Figure A, on page 6.

The Option 2 group certification process has successfully brought smallholders access to major markets domestically and worldwide while maintaining, and even improving, quality management, food safety at the individual farm level, and buyer confidence in certified farms and their products. As of December 2011, more than 112,000 farms in 112 countries were certified under GlobalGAP, with 70 percent certified under Option 2. The success of GlobalGAP’s group audit approach has been well documented through resources, records, and case studies available from successful Option 2-certified groups.\(^4\) One resource of particular value is GlobalGAP’s generic QMS manual for a fictional smallholder farm group in Kenya, which provides a roadmap for U.S. groups working to implement a group audit approach.

\(^4\) Many of these GlobalGAP resources are referenced at the end of this report.
Lessons learned from the GlobalGAP’s Option 2 will be used in this report to offer guidance on the opportunities and pitfalls of the group approach when adapted and applied in the context of U.S. small farms.

![Sample Group GAPs Organizational Chart](image)

Figure A: Sample Group GAP Organization Chart

USDA GAP History

In the U.S., GAP development has primarily focused on foodborne illness and the minimization of public health risks from on-farm practices.⁵

USDA AMS⁶, in partnership with the Association of Fruit & Vegetable Inspection and Standardization Agencies (AFVISA), began developing a national audit service in response to requests from shippers and growers in various states who wanted an audit service that would satisfy buyer’s needs. In August 2001, a draft auditor checklist and the GAP and Good Handling Practices (GHP) audit verification program were approved, and implementation of the program

⁵ For example, see references to GAP in the U.S. Food and Drug Administration’s “Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables,” October 1998.

⁶ Information on USDA’s GAP program provided by Donna Burke-Fonda, Ken Petersen, and Bruce Summers, of USDA AMS, in August 2012.
began in January 2002. Conducted at least once annually, the GAP and GHP program assesses a company’s efforts to minimize the possibility of contamination of fresh fruits, vegetables, and nuts by microbial pathogens. It does not, however, assure that the product is free from microbial contamination; product safety and continued safe practices are the responsibility of the company. Through this program, USDA AMS now provides GAP and GHP Audits, Produce GAPS Harmonized Audits, and commodity specific audits, such as the Tomato Food Safety Audit Protocol, Mushroom GAP, and the Leafy Green Marketing Agreement in California and Arizona. USDA’s GAP and GHP certification is recognized as an approved supplier audit by many buyers and food service companies including Sysco, Subway, Costco Wholesale Corporation, Walmart, Wegmans, Ahold, Hannaford Supermarkets, and USDA’s Commodity Procurement Program.

Since the program’s inception in 2001, more than 8,500 audits for produce businesses and farms of every size nationwide have been performed by USDA-licensed and trained field auditors. In 2011, USDA-licensed inspectors completed 3,100 audits on more than 90 different commodities across 46 states and Canada. Most USDA audits are processed and completed within two weeks, after which detailed results are provided to the audited companies.

Good Natured Family Farms History

The start of Good Natured Family Farms (GNFF) can be traced back to 1995, when Diana and Gary Endicott purchased a 400-acre farm near Bronson, Kansas, to raise beef cattle and grow vegetables. Since that time, they have operated Rainbow Organic Farms (ROF) with the commitment to growing “natural” food, free from hormones, antibiotics, and pesticides.

In 1997, faced with the challenge of offloading a bumper tomato crop, Diana Endicott initiated a groundbreaking direct business relationship with local grocery stores, at that time unusual because locally grown food was perceived as too costly and inefficient to meet the volume demand. Endicott approached Hen House Markets, a regional grocery chain owned and operated by Balls Food Stores, which agreed to buy the tomatoes and sell them for a fair and reasonable price. The success of this arrangement led to an expansion of the partnership, and Balls Food Stores began sourcing ROF’s hormone- and antibiotic-free, corn-fed beef. When the retail giant’s demand for “all natural” beef exceeded supply, Endicott partnered with other local natural food producers around Kansas City to form the All Natural Beef Producers Cooperative. Through the cooperative, local farmers could access previously hard-to-reach mainstream retailers, and they had less risk and more flexibility in setting prices. To differentiate the product, Endicott created an umbrella brand, GNFF, to be sold exclusively through Balls Food Stores, and it soon expanded to include other product lines.

Today, GNFF is a loose alliance of more than 150 Kansas and Missouri farm groups, cooperatives, and independent farmers, most within a 200-mile radius of Kansas City, committed to sustainable farming. GNFF’s operations and services continue to grow; the group’s Uniontown processing facility is one of five in the nation federally inspected for multi-species processing, and one of just a few that process poultry on a small-scale.

7 Since July 2007, GAP and GHP audits have been a requirement for all fresh fruit and vegetable purchases by the USDA.
As GNFF grew and product lines increased, the group confronted the challenge of coordinating supplier relationships and formalizing obligations to prevent liability issues. Additionally, it was necessary to develop and implement systems and standard operating procedures to ensure quality and meet growing buyer demand for GAP food safety certification. In 2009, when two major buyers, Sysco Kansas City and Chipotle, said that GNFF producers must soon meet the USDA GAP standard, the Endicotts preemptively began researching an approach to help GNFF farms meet these requirements. In voluntarily assuming responsibility for member-farm certification, the cooperative took on the cost of materials, training, and for USDA audits. The costs were also shared by the farmers, who paid for on-farm upgrades and some parts of training, as well as committed their time through salaries. Endicott explains that farmers were willing to allocate resources and a few days of their time to the process because they knew food safety is important to end customers, and because they understood they must meet buyers’ demands for GAP.

As an added challenge, many of GNFF’s suppliers, contributing as much as 30 percent of its sales in 2009, are Amish and Mennonite farms that practice traditional horse-powered farming, which requires extra hurdles to meet the approval of food safety auditors. Using horse manure as a fertilizer, for example, raises E.coli concerns for auditors. Additionally, the absence of electricity and computers on these farms made it more difficult to create a food safety plan and manual. Despite these obstacles, Endicott and colleague Otavio Silva strategically selected four farms, one large and one small farm from both the Amish and Mennonite communities, to participate in GNFF’s first steps toward meeting GAP requirements. After researching GAP on the internet and completing Cornell University’s online training program, they worked with the Amish and Mennonite farmers to learn the GAP principles and develop a handwritten plan adapted to their community needs. GNFF’s forward-thinking foray into group GAP implementation led to its partnership with USDA to participate in a group certification pilot project in 2010.

USDA Group GAP Pilot Project

While the current method of USDA GAP certification works for most commercial horticultural production enterprises, many smaller producers expressed concerns regarding the costs and time necessary to implement a full-scale food safety program as well as the cost of an annual audit of their operation. Several private certification bodies offer group certification, which allows groups of producers operating under a central entity to work together to achieve GAP certification. To address small producer concerns, USDA AMS began to consider the merits of offering a group certification program like those provided by private certification bodies and GlobalGAP. In 2010, USDA AMS initiated three pilot projects investigating alternative methods of GAP certification:

1. USDA AMS provided a free GAP training program for individual farmers. Then it tracked the farmers’ interest and ability to follow up and achieve GAP certification.
2. USDA AMS collaborated with an organic certifier to utilize their auditors and inspection process, offering a combined food safety and National Organic Program (NOP) certification.
3. USDA partnered with GNFF for a pilot program to test the group certification approach to determine how it could work within the framework of the USDA GAP and GHP program.
GNFF volunteered to participate in the group certification pilot project in conjunction with 30 of its Amish and Mennonite farmer suppliers in Rich Hill and Stanberry, Missouri. Since GNFF had already been working with these suppliers on traditional GAP certification, including assistance with training materials based on the Cornell GAP curriculum and performance of mock audits, taking the “next step” to group certification was perceived to be a less difficult leap. GNFF also had dedicated staff to conduct the internal audits necessary for group certification and several buyer representatives who would support the group certification concept.

In October 2010 and February 2011, USDA AMS offered two training sessions for GNFF’s community lead farmers utilizing extension personnel from the University of Maryland and Rutgers University. These training sessions focused on good agricultural practices and opened a practical discussion with the GNFF coordinator and USDA AMS program manager on how the group certification would work from the grower’s perspective. Field audits at Rich Hill and Stanberry were conducted in June and July 2011 and USDA review for compliance was completed in August 2011. The results were encouraging; USDA provided feedback identifying a number of items during the assessment for GNFF to consider and implement, and it decided to continue the pilot and audit GNFF operations as a group again in 2012. The details of this process are documented in the Group GAP Implementation Guide and Assessment Tool later in this report.

At this time USDA AMS continues to develop internal systems that will enable it to offer a fully functional group QMS audit system that meets buyer requirements and adds value for farmers and industry players as well.
Group GAP Implementation Guide and Assessment Tool

These eight steps offer a roadmap for implementation of the Group GAP certification process, and provide a tool to track a group’s progress toward completion. To be successful the project must demonstrate the group approach’s capacity to maximize quality of food safety compliance while minimizing cost to each producer and the collective group. Some of the entries in the Notes and Recommendations column refer to particular numbered items found in the Next Steps and Recommendations section.

<table>
<thead>
<tr>
<th>Group GAP Implementation Steps *</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progress Factor 1: Initial Sensitization and Commitment to Pursue Group Approach</td>
<td>Stakeholders, including producers and buyers, involved in the supply chain are well informed and aware of the steps towards certification, time commitment, cost, and investment required before agreeing to certification.</td>
<td>A group approach is possible when all parties understand the costs and benefits involved and agree to participate. GNFF’s program would not have moved forward without positive responses from the producers and Sysco KC, the buyer.</td>
</tr>
<tr>
<td>1.A In response to buyer demand for GAP, a food hub aggregator coordinates discussion among value chain members and seeks consensus on the value of a group approach to food safety certification.</td>
<td>When Sysco Kansas City (KC), a wholesale food service provider seeking to start a “locally grown” program, offered a market opportunity to GNFF, the farm group began looking into ways to meet the buyer’s requirement for GAP or another food safety certification of equal value and acceptance. In 2010, GNFF began testing a food safety audit approach with just a few of its farms. USDA, at the same time investigating options for group GAP certification, engaged GNFF in a pilot project. Sysco KC agreed to participate in the process and to test the group certification process. GNFF held a meeting with the lead farmers of the Amish and Mennonite communities in its alliance and explained the opportunity, extra requirements, and responsibility that certification would require. The lead farmers discussed the opportunity and process with their cluster of farms to determine if it was worth their time and effort.</td>
<td>USDA’s role in this step was only to provide efficient information on the costs and benefits of the group certification. When pressure comes from the buyer for food safety certification, the food hub or farm group leader has an opportunity to solve the problem and provide a service by convincing the players involved to participate.</td>
</tr>
<tr>
<td>• The buyer agrees to engage in this process.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• All farmers involved agree that if a group approach can be developed it will support their efforts to market collectively.</td>
<td></td>
<td>One reason for GNFF’s success is that they</td>
</tr>
<tr>
<td>• USDA/AMS inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group GAP Implementation Steps *</td>
<td>Good Natured Family Farms Pilot Project Implementation Progress</td>
<td>Notes and Recommendations for Future Group GAP Projects</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>and auditing services agrees to engage in this process.</td>
<td>investment to move toward group GAP certification. The process was executed in stages. In 2010, the lead farmers selected one or two additional farms to start the GAP certification process. Then, in 2011, with a year’s history of individual GAP experience, GNFF brought the entire community on board to participate in the Group GAP project. GNFF and the lead farmers, who were already familiar with GAP and certified, met with the farmers interested in participating in Group GAP. GNFF conducted on-farm workshops with lead farmers to familiarize them with the training process. The lead farmers set the pace and involved the community with training. The interested farmers who came forth were also from the largest farms with the greatest volumes of produce to sell. These farmers had the most to gain with group GAP certification. Approximately 10–15 farmers in each group, Stanberry and Ridge Hill, came forward to participate.</td>
<td>established a partnership with a locally owned chain committed to the community. Other groups may find success with bigger institutional buyers committed to change, like Sysco. It is fairly rare for a group to engage with a global national firm as opposed to finding smaller, more scaled, matched local entities that are in some way mission consistent, but Endicott’s success with Balls Food Stores gave her the language and confidence to do more business with Sysco, and eventually GNFF built a relationship of trust with Sysco KC after working together for several years. Groups will have different sets of challenges depending where the pressures are coming from to meet GAP compliance, whether it is from schools, multinational companies, or some other buyer. Buyers at this point will rarely be familiar with the group approach, but they will know they need every farmer to be GAP audited.</td>
</tr>
</tbody>
</table>

| 1.B | The producer group assesses capacity to meet time and cost requirements and decides to implement certification process. | GNFF’s producers all agreed to the process and the procedures. GNFF explained to the farmer groups that the main advantage of participating in group GAP from the beginning was that they were able to have a voice in the process. Endicott said, “The regulators will develop the group GAP program based on their knowledge and experience. If you do not participate and provide input Commitment to implement the process might be made at the outset or any time up to end of Progress Factor 3. |

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
Progress Factor 2: Identifying Financial Support

It is well understood that first-year costs (one-time investments) are significant, and therefore sources of financial support are identified to meet the group costs of certification and implementation activities, and these costs are communicated to all parties involved.

2.A The group estimates budget and identifies funding for training costs.

The costs of training in the pilot project were shared by USDA AMS, GNFF, and the farmers.

USDA AMS contributed to some of the costs of training by sending two technical assistance providers, Chris Walsh of the University of Maryland and Wes Klein of Rutgers University, who provided a one-day training for all farmers interested in Group GAP certification.

Additional expenses included GNFF staff time, development and production of handouts, travel, meals and snacks for participants, and the cost of training from outside sources. Taking advantage of extension and existing programs for training can be a low-cost approach, says Endicott. She adds that, if a train-the-trainer approach like that of GNFF is utilized, the time and travel expenses of the lead farmers must be covered as well.

“I think you’ll find it true across the board that, when buyers say they need GAP, farm groups will find the resources to do it, usually through people’s salaries.”

Training and resources for trainings can come from many directions: partner organizations, grant funders, processors, buyers, and aggregators interested in sourcing certified produce from smallholder farms.

As much as possible, it is advisable that program expenses be shielded from farmers as cash costs out-of-pocket, because these up-front costs can be a burden. This is an important consideration since the farmers may have to cover compliance and implementation expenses later in the process.

There is significant ongoing effort to develop tools to support consistent food safety training. The Produce Safety Alliance (a partnership between FDA, USDA, and industry), for example, has been working to develop a uniform GAP curriculum. Additionally, the National Sustainable Agriculture Coalition (NSAC) has led lobbying efforts for training to
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps *</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>says Endicott. “Stakeholders along the value chain also have internal resources (salaries) to dedicate to this. They can allocate a few days of personal time because food safety is important to end customers. Additional assistance can be built into their existing infrastructure, from buyers, farmers, or aggregators.” Whenever possible, GNFF took advantage of trainings at conferences and other programs that already required farmer participation, piggybacking on these activities to reduce costs.</td>
<td>The group did not ask farmers to pay out-of-pocket for training; instead they contributed through their time spent at the trainings. Additionally, GNFF farmers attended workshops and conferences such as the annual Vegetable Growers Conference, which included sessions on food safety. Most of the farmers were already planning to attend these events and paid for their own registration and travel.</td>
<td>be grant-funded through the farm bill. The form, scope, and shape of the food safety training solution are not yet determined, however. This is a concern for both individual and group approaches to GAP. [Next Step 1]</td>
</tr>
<tr>
<td>2.B The farm group estimates budget and identifies funding for development of Quality Management System (QMS) plan, documented in the QMS Manual.</td>
<td>GNFF did not have a QMS template to work from in developing the system manual, but Endicott estimates that, if a QMS template were available, it would cost one week’s salary of a mid-level trainer to gather farm-specific information and customize a QMS for the farmer group. She recommends, whenever possible, to look for resources internally and in the community, to find individuals with the expertise to expedite the process and cut costs. “By working cooperatively with universities and local companies that implement QMS you gain knowledge and build a support system as you move.</td>
<td>A USDA AMS-approved template will be a great asset to aggregators wishing to implement the group approach. [Next Step 5]</td>
</tr>
<tr>
<td></td>
<td>A USDA AMS-approved template will be a great asset to aggregators wishing to implement the group approach. [Next Step 5]</td>
<td>In Washington State, where tree fruit farmers implemented the group GAP approach for a third-party verification program, the QMS manual cost approximately $25,000 to develop, according to Michael Wardrip, a fruit-packing food safety and systems development expert with extensive experience implementing ISO</td>
</tr>
<tr>
<td>Group GAP Implementation Steps *</td>
<td>Good Natured Family Farms Pilot Project Implementation Progress</td>
<td>Notes and Recommendations for Future Group GAP Projects</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2.C The farm group estimates</td>
<td>GNFF did not have the funds to hire new internal inspectors and auditors. Instead, GNFF added these</td>
<td>Annual training should be part of the farmer group’s program maintenance cost. As demand</td>
</tr>
</tbody>
</table>

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps *</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>budget and identities funding for training of internal auditor/inspector. In small groups, these functions may be combined with other job descriptions.</td>
<td>responsibilities into the job descriptions of the existing roles of employees who had the appropriate experience and ability to take on these tasks. In this way, GNFF was able to cover many of the inspector and auditor training costs through salaries. GNFF employees already had some background in food safety or a related area. To add on this, they conducted one group GAP workshop and one “hands on” field training. The on-farm site field training was initially done as a team at a selected farm.</td>
<td>for GAP certification grows, there is an increasing need for food safety auditors and quality auditor training programs. The demand for skilled and qualified inspectors and auditors with a strong science background now far exceeds supply; this is currently an area that offers tremendous opportunity for career growth. Cornell offers an online program, which GNFF requires its auditors and inspectors to complete, but this kind of course is best suited for those with an appropriate background. USDA does not currently offer internal auditor training, but it may in the future. [Next Step 2]</td>
</tr>
</tbody>
</table>

2.D The group estimates budget for implementation of on-farm improvements as needed and identifies funding. The majority of on-farm improvements for the pilot project were related to hygiene and sanitation upgrades: hand-washing facilities, restroom facilities, pack lines, and post-harvest handling. Most of these costs were passed onto the farmers. Copies of the manuals and laminated signage were provided by GNFF. If the farmer wanted to participate but could not find a way to pay for the necessary on-farm upgrades, GNFF tried to assist them. On-farm improvements are the farmers’ responsibility for Group GAP. Fortunately, the majority of required upgrades are related to hygiene and sanitation, which can be dealt with fairly inexpensively by establishing good on-farm processes. Farmers should also be prepared for possible costs in the area of pack lines and post-harvest handling. Other potentially more costly areas for improvement may be in separation of domestic animals from crop activities, for water testing and water systems issues, and plant protection product storage; in such cases, farms may need loans and grants to address the problems. The farmer group can share and reduce some expenses in the procurement of signage and other bulk-

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps *</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.E Group estimates budget and identifies funding for auditing costs.</td>
<td>For the pilot project, USDA AMS covered its costs to perform the audits. On transition from the pilot to a fully approved audit program, however, each group will have to pay its own external auditing costs. To cover auditing costs in the future, Endicott says “the cost should be based on a percentage mark-up (1–2 cents per pound) on the product going through the system, to be equally shared by the farmer, aggregator, and buyer. This can be accomplished through a bill-back process. However, it would be helpful to have funds available to cover the first-year audits. Then the bill-back could be implemented to pay for subsequent years.”</td>
<td>First-year system development and auditing funds should be developed “up-front” through grants, private stakeholders, or another program of USDA, such as AMS Marketing and Transportation Services (MTS), Risk Management Agency (RMA), or Risk Management Education (RME). Farm groups seeking this assistance should be aware that they may be required to provide in-kind matching to meet outside investments. [Next Step 3] To pay for future audits and system costs, the group would be well advised to begin setting aside a percentage of sales immediately. It is imperative that Group GAP costs become self-supporting. Otherwise, the farm group will find itself in perpetual grant-writing mode. In budgeting for year one, both one-time costs and ongoing costs will be identified. The latter anticipated costs can best be funded through a reserve fund created by retaining a portion of the proceeds of sales. This fund should be restricted only to use in funding the costs of the Group GAP program. It is a burden for farmers to be hit with costs as they arise, especially early in the season before significant revenues from sales have occurred; reserve fund development through a set-aside</td>
</tr>
<tr>
<td>Group GAP Implementation Steps *</td>
<td>Good Natured Family Farms Pilot Project Implementation Progress</td>
<td>Notes and Recommendations for Future Group GAP Projects</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of previous year’s proceeds avoids this problem.</td>
</tr>
</tbody>
</table>

Progress Factor 3: Development and Documentation of a Quality Management System (QMS)

3.A Farmer group identifies an internal management team including:
- a QMS Responsible person (QMR)
- internal inspector(s)
- internal auditor(s)

In a small farmer group, the same person may fulfill more than one of these different functions. The management team must demonstrate at least a minimum competency and proficiency as defined by USDA.

To select a qualified management team, GNFF looked for individuals with food safety knowledge or experience, audit or inspection experience, and a solid education in science or agriculture. Additionally, the group required all members of the team to complete Cornell’s online food safety course, which established a shared basis of knowledge and training.

In 2011, the GNFF internal audit team consisted of Diana Endicott, with a master’s degree in agriculture and a background in HACCP, serving as the QMR; Otavio Silva, a certified environmental auditor with a master’s degree in environmental engineering; and Delbert Housworth, a local buyer for Balls Food Stores who is Serv Safe certified. In 2012, Tony Schwager, with a bachelor of science degree in agriculture education, a master’s degree in agricultural economics, and previous training in on-farm food safety, and Kristina Bridges, with a doctoral degree in microbiology, performed the internal audits.

In GNFF’s approach, lead farmers take on many QMR responsibilities for a small cluster of farms, in addition to the group’s overall QMR.

Identification of a qualified management team that meets buyer requirements is a crucial step in creating a viable group GAP process. In small farm groups, there may not be enough resources to separate inspection and auditing entities; this is an area yet to be addressed in the USDA Group GAP process.

GNFF’s approach, assigning some QMR tasks to lead farmers, has potential merit but is not a requirement for other groups implementing the process.

For the pilot project, USDA evaluated internal auditors on a case by case basis, but it has not yet established how members of the farm group management team will establish and demonstrate competency and proficiency. Some specific training will be required, and other methods of achieving competency will be considered. [Next Step 2]

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps *</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>internal auditor roles, responsibilities, and training requirements. It does not yet outline the roles, responsibilities, and credentialing of the QMR.</td>
<td>In development of its QMS, GNFF consulted with buyers, extension agents, and others in the community who had experience and knowledge of developing such systems. Sysco KC identified two individuals with QMS knowledge and training, Pat Cipolla, Director of Produce Marketing, and Saul Morales of National Sysco Quality Assurance. Del Housworth, a farmer and the Local Procurement Coordinator of retail partner Balls Foods, was able to assist the group with internal audits. USDA AMS did not provide technical assistance in this area because of its role as external auditor; a different program would have to be created outside of USDA AMS to facilitate TA in this area, says Ken Petersen. Nonetheless, Endicott suggests, it would be helpful in the future for USDA to provide resources like the USDA Internal Auditor Training Manual, which would be valuable for groups developing their QMS.</td>
<td>A gap currently exists in technical assistance available for QMS development because it is not appropriate to go to third-party auditors with questions about the QMS. It would be helpful if an outside program were developed to address this need, for example, like some of those currently administered by USDA AMS Transportation and Marketing Program. Global GAP QMS development is supported by a network of worldwide consultants. A similar base of TA consultants might also be developed to assist with this need in U.S. GAP development. As another alternative, support could be developed through existing users of ISO 9000, a worldwide approved standard for QMS, which is applied to businesses of all kinds. Many such programs already exist, but they are targeted toward manufacturing, not agriculture. [Next Step 4]</td>
</tr>
<tr>
<td>3.B External support is identified to provide TA in cases when training or QMS development exceeds the group’s internal capacity.</td>
<td>3.C USDA AMS provides a template of acceptable Timing of the development of the GNFF QMS in 2011 led to an atypical sequence: Endicott did not learn, until just before the USDA field audit, that a QMS manual was</td>
<td>A QMS template is needed for U.S. farmers using the group approach to certification. GlobalGAP’s Kenyan smallholder farmer QMS</td>
</tr>
</tbody>
</table>

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps *</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>contents for the QMS. A QMS manual delineates how the program is administered at the group level, and is therefore the most critical part of the process.</td>
<td>required. As a result, USDA did not review the QMS manual prior to auditing the system and select group members of the pilot project. As previously noted, USDA AMS did not provide a template. The 2011 QMS manual was developed with input and feedback from USDA AMS, which reviewed it later in the year. Directions and suggestions provided during that review will be integrated into the 2012 QMS manual. For the next year, it was determined that GNFF’s QMS would be reviewed, and GNFF developed a manual and continues to revise and update it to match current operations. GNFF involved its growers in part of the development of the QMS by soliciting their input during training sessions. “We organized farmers into groups and gave each group one category of the USDA GAP audit checklist, and asked them to write either a Standard Operating Procedure (SOP) or Standard Sanitation Operating Procedure (SSOP). The GNFF team compiled the SOPs and SSOPs to correspond with the group GAP audit checklist. We made sure the farmers were involved in making this—the material has to belong to the farmer,” says Endicott. The following year, USDA reviewed the GNFF QMS and found that it adequately outlined expectations of growers; however, it needed improvement on internal controls.</td>
<td>Development of a QMS, though a technically challenging task, is a crucial requirement of Group GAP certification. The QMS should be as simple, realistic, and understandable as possible for all members of the group. Finding ways to involve the farmers in the process helps them to “own” the system. “Locating farmers with a proactive view of food safety and sustainable agriculture will pay big dividends in preparation and review of the QMS manual,” says Wardrip. These farmers tend to see the long-term benefits of this work and the finished manual will likely contain useful insights on “best practices” that should</td>
</tr>
</tbody>
</table>

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps<sup>*</sup></th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.E</td>
<td>“The internal controls should indicate where documents are kept, how long farmers should keep them, and outline a system in place on how they are kept,” says Endicott. “We had not specifically outlined these yet, but are improving it in the latest manual.” The QMS is a living system that GNFF continues to update and improve. [See Appendix: GNFF QMS Manual.]</td>
<td>The QMS provides a potential framework to address production activities, market requirements, and needs of farmer groups not limited to food safety. GNFF’s examples in this area demonstrate the potential reach of centralization. Allocating more responsibilities for documentation to the QMR can significantly reduce the burden of implementation upon each member.</td>
</tr>
<tr>
<td>3.F</td>
<td>USDA-AMS does not dictate how to adhere or implement specific requirements of the food safety standard; instead, it evaluates for effectiveness. The farm group, examining its unique context, then has the ability</td>
<td>USDA does not proscribe acceptable solutions; rather, it reviews what the group proposes to address a need and decides if it is adequate and defensible.</td>
</tr>
</tbody>
</table>

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>control points sufficiently within the smallholder or small farmer context. Buyers and USDA must also agree that these processes comply with standards.</td>
<td>to develop its own compliance strategies. This is one of strengths of the group process, says Diana, “We can find solutions as a group for critical control points. It demonstrates the need to work collectively. For example, we worked with Kansas State University to develop a three-option process for working with horse manure in produce fields. We wrote up a standardized process and submitted it to USDA and they accepted it.” The buyer, Sysco, also played a role in reviewing the methods of compliance and giving its approval.</td>
<td>In the small farm and short supply chain context, where the operation can be simpler and often involves less risk than big farms, the ways to address the risks can also be simpler and less costly. The group should not be constrained by what big farms are implementing to meet the criteria.</td>
</tr>
<tr>
<td>3.G If a consultant or outside TA provider assists with development of the QMS, the QMR should be fully involved so that he/she can update and maintain the document each year, and ensure everything in the QMS is implemented in reality.</td>
<td>As GNFF’s QMR, Endicott emphasizes the importance of group ownership of the QMS. In the GNFF model, where lead farmers take on some of the QMR’s role at the farm level, there are many individuals who assist in maintaining the QMS. “If I were to leave tomorrow,” says Endicott, “Everyone must have access to the QMS and be able to continue. There should not be one person who controls information; others should be able to maintain it.” At GNFF, there are at least two people at the group level, Diana Endicott and Del Housworth of Balls Foods, who maintain the QMS, in addition to the lead farmers.</td>
<td>USDA AMS is not concerned if outside groups develop the QMS, as long as the farm group remains in control of it. Wardrip notes that document implementation needs to be as consistent as possible. When an auditor goes from one farm in the group to another, the records and procedures must be administered uniformly. “Some minor flexibility can be allowed between farms,” he says, but it must be watched carefully to prevent the pollution of the QMS and records system.</td>
</tr>
<tr>
<td>3.H The farmer group submits the QMS to the technical service provider, USDA AMS, and buyer as needed for review.</td>
<td>In 2011 USDA AMS did not advise GNFF of the need for a QMS manual prior to auditing the system and select group members. In the future USDA AMS will require a review of the GNFF QMS before conducting field audits. “GNFF developed the manual and sent it to the USDA</td>
<td>At some point in the QMS development process, prior to its use, the QMS must be evaluated and determined to be acceptable. USDA will be involved in the evaluation process.</td>
</tr>
</tbody>
</table>

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.A</td>
<td>USDA AMS covered this cost for the pilot project and offered to send technical assistance, which was provided by Chris Walsh of the University of Maryland and Wes Klein of Rutgers University.</td>
<td>Training of farmers could be conducted by agricultural extension agents, staff of a produce buying company, group leaders, lead farmers in communities, or by other technical consultants. USDA AMS measures the quality of the training by looking at QMR audits and spot farm audits; the effectiveness of the training conducted is measured in the group’s results, internal and external. Each group’s choice about how to meet their TA needs will be unique. This area is rapidly developing in response to growing need, which exceeds supply. There is a hole to fill in the TA continuum. Ken Petersen suggests this could be a potential new USDA program, but it cannot be part of USDA AMS audit services. [Next Step 1]</td>
</tr>
<tr>
<td>4.B</td>
<td>GNFF developed and provided its growers with training materials and templates to facilitate the implementation of an on-farm food safety plan. The group used a number of different resources to support implementation.</td>
<td>In the 2011 pilot, USDA AMS assisted with the selection of training material and provided technical assistance from Chris Walsh and Wes Klein.</td>
</tr>
</tbody>
</table>

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>developed or sourced from partners (such as the Produce Safety Alliance, extension, or non-profits), and these materials cover all appropriate subjects in an organized way.</td>
<td>of resources to develop these training materials. Because the GNFF alliance includes an all-natural beef program, Endicott was familiar with USDA’s Quality Verification Systems Program (QSVP) rules for identification and traceability, and she incorporated these into the training. QSVP has similar content on audits and reports that can be extrapolated and applied to a produce group GAP program. Endicott also referred to USDA Hazard Analysis Critical Control Program (HACCP) standards for meat processing food safety information; materials from Cornell University including the “Food Safety Begins on The Farm” manual, Kansas State University’s “Food-A-Syst” manual, and the industry standard, “Safe Serv.” Additionally, Endicott had training in the organizational standards of ISO 9000. To ensure they had covered all necessary areas in an organized way, GNFF organized its manuals with the same headings and format following the USDA audit checklists.</td>
<td>Klein, but in the future does not intend to supply this material or training. There are a growing number of resources to support the farmer assessment process, but it is unlikely that a national template will be developed for food safety training because of the differing needs of farm groups. While such standardized materials will be helpful, they will need to be adapted and supplemented to fit different locales and unique farm group situations. Cornell has online resources, for example, but these are of limited value for users with limited language skills and Amish communities. Training may develop on a case by case basis depending on regional considerations and needs of buyers.</td>
</tr>
</tbody>
</table>

[See the Appendices and Additional Resources for GNFF’s GAP Audit Manual for Farmers (Feb 2009), and more information on ISO 9000, USDA Audit checklists, and the QSVP Manual.]

| 4.C | GNFF invited all of the interested groups to attend trainings and provide input, including extension agents and buyers from Sysco KC and Balls Food Stores. “Extension agents were involved in the trainings because they are the first ones the farmers call with questions,” | GNFF’s stakeholder involvement is exemplary and future group programs should strive to be so transparent and inclusive. |

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps *</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.D</td>
<td>The service provider trains the farmers in customizing and applying module templates. Upon completion of training, farmers will possess a complete operation-specific, on-farm GAP manual/ Food Safety program.</td>
<td>For the purposes of the pilot program, USDA AMS participated in the training to assist in the implementation. In the future, the USDA-AMS role, if requested, would be limited to relaying a “nuts and bolts” overview of group certification. Farmers must become familiar with the risks that are being addressed through GAP and the language of GAP. GNFF’s farmers benefited from years of training and community outreach on GAP before the pilot. This training was part of the basis of GNFF’s success. Wardrip says that farmers’ initial reaction to food safety can be described as mixed, at best. “Approximately 20 percent of farmers’ initial reaction is reasonably negative. Another 20 percent is fairly positive. The remaining 60</td>
</tr>
</tbody>
</table>

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps *</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>“One of the most important parts of the technical service—what made it work—was that the farmers were already familiar with GAP. They had the foundation to understand processes and procedures through earlier training. This allowed the technical service providers, Wes Klein and Chris Walsh, to take the training to the next level. They brought the scientific approach and looked at it in a non-technical way in which farmers were comfortable. Walsh explained the science behind why the food safety process was important, and the farmers already had a foundation of how to implement the processes,” says Endicott.</td>
<td>percent are more influenced by the local ‘coffee shop talk’ than reality or the actual GAP requirements,” he says. To win the favor of these farmers and create a successful group GAP system, he emphasizes the importance of creating a manual that is very practical, clear, and highly usable, and cultivating connections with the farmers who understand and appreciate the QMS and GAP requirements. He says, “Many farmers have commented to me a year after implementing GAP, ‘Don’t ever tell my friends, but I am glad I did this. I am more efficient due to maintenance records, and my plant protection products are organized and inventoried so I don’t buy more than needed. I never worry about state safety compliance visits to my farm, and my training is always up-to-date now. The farm has been cleaned up of scrap metal and other useless items and I feel better about my place.’ They don’t want to be perceived by their friends as pro-GAP, but they also see good benefits in the program.”</td>
<td></td>
</tr>
</tbody>
</table>

Progress Factor 5: Internal Inspectors and Auditors Receive Training and Begin Performing Audits.

| 5.A Internal auditors/inspectors receive training from USDA AMS or other appropriate partner, in HACCP, Food | GNFF used its own resources to train internal auditors and inspectors. They were required to complete Cornell’s online food safety course. Endicott suggests that it may be helpful in the future for USDA AMS to make its Internal Auditor Training Manual available to groups at USDA AMS has indicated it recognizes a potential need to train internal auditors. Internal auditors will need to demonstrate that they are as well trained and competent as any external auditor should be, in order to assure | |

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps *</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hygiene, PPP/IPM/Fertilizer handling.</td>
<td>this stage.</td>
<td>buyer trust. USDA AMS anticipates utilizing its own auditor training in some fashion to qualify and train internal inspector/auditors, and it anticipates recognizing real world experience in lieu of training when applicable. Documents made available in the future to support such training will be very valuable for groups at this stage in the process.</td>
</tr>
<tr>
<td>5.B Records are maintained by the QMR of all training sessions, the trainer, the date, topics covered, and the attendees.</td>
<td>GNFF’s QMS (see page 8) lists GAP training workshop dates back to 2007.</td>
<td>Record keeping is one of the essential duties of the QMR. In the world of auditing and verification, if it isn’t documented, it didn’t happen.</td>
</tr>
<tr>
<td>5.C Upon completion of training, the internal inspector inspects all member farms and gathers results for presentation to USDA.</td>
<td>During the first year of the pilot project, records for almost all internal audits were available during the USDA AMS review of GNFF, and it was suggested a more systematic record keeping process be developed for this important step, which GNFF worked to improve on for the following year. “The auditor wanted to see a list of names of internal audits, accompanied by a list of the farm locations with a map. This allowed easier selection of farms to audit. This year we provided the information in a concise format, so they can readily look and understand the farm’s name, size, and location,” says Endicott. She said that, leading up to the internal audit, the lead farmer will send out a reminder which includes a list of critical control points from previous years. He will tell Scheduling of internal audits is important; the times at which the farming process is at high risk for food safety issues, particularly during harvest, processing, and delivery, must be taken into consideration. Internal audits should be scheduled to occur at times that allow on-farm processes to be checked when they matter the most. Although this assumption that the failure of an individual leads to the failure of the group is beneficial for accountability and self-policing, in practice, the group process allows time for individual farms to change to meet compliance. A serious non-compliance might result in a hold on the particular farm’s product while the</td>
<td></td>
</tr>
</tbody>
</table>

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps *</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.D Internal audits and related materials are made accessible to the buyer, ideally through a mutually agreed upon IT system</td>
<td>An IT system to post internal audit reports was not available for this step of the process in the pilot project. Endicott says that she welcomes the publication of records, because the group is participating in the process and looking for buyers. She suggests that a password accessible system, in which USDA would post records, would be very useful, and the individual farm audit checklist could be published without comment.</td>
<td>This step is an important area for discussion and future development. With individual GAP certification, each farm is audited and the report can be made available by the auditing entity (in this case, USDA AMS). In a group approach, however, when only some of the farms are spot-checked, the buyer must have a way to be satisfied that the internal audit is robust. For this reason, the internal audit reports should be</td>
</tr>
</tbody>
</table>

"These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip."
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps *</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.E Upon review of reports, buyer identifies any critical compliance issues and corrective actions will be recommended.</td>
<td>Endicott says GNFF and any farmer group should encourage, recommend, and welcome buyer review and recommendation on corrective action. “Most buyers should do this. We have asked them to participate because it allows us an opportunity to work to improve on compliance issues and corrective action.”</td>
<td>made available to buyers concerned about different aspects of compliance. If USDA AMS can make the results available, the buyer is then able to follow up with the group for more information. As a larger number of groups and buyers choose group certification, it would be very valuable for USDA AMS or some other third party to create an IT solution that addresses this need, creating access to reports for appropriate parties. This may raise the cost of audits or result in additional charges. In past years, USDA AMS has not published inspection reports, and some buyers have not accepted USDA AMS certification because of this, even for individual farms, because it prevents buyers’ ability to spot-check at the farms for their control point concerns. [Next Step 6]</td>
</tr>
<tr>
<td>5.F Upon fulfillment of corrective requirements of the buyer (if any), the grower group</td>
<td>GNFF worked with Sysco KC and Balls Food Stores, involving the buyers throughout the process, and they agreed that the continuous improvement reflected in the QMS process and the individual farm food safety plans</td>
<td>This step is significant because the buyer group has given provisional approval. Based on buyer review and sufficient, appropriate response from the group, they are ready to buy from the</td>
</tr>
</tbody>
</table>

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
Group GAP Implementation Steps *

<table>
<thead>
<tr>
<th>Group GAP Implementation Steps</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>receives provisional vendor approval and buyer begins purchasing produce.</td>
<td>were sufficient to address their concerns. Both continue to purchase with expectation of further improvement in the process.</td>
<td>group.</td>
</tr>
</tbody>
</table>

Progress Factor 6: Planning and Implementation of Third Party Audit

After the QMS system has been designed and implemented, it is ready for third-party verification.

6.A

<table>
<thead>
<tr>
<th>6.A</th>
<th>USDA scheduled its audits about a month in advance, during harvest season, but far enough into harvest that there was sufficient time for internal audits to have been conducted and corrective actions to be implemented.</th>
</tr>
</thead>
<tbody>
<tr>
<td>In collaboration, the QMR, Technical Service provider, buyer, and USDA AMS develop a third-party audit timetable and plan.</td>
<td>Endicott says that, for groups implementing the group approach, a timeline is necessary to coordinate with aggregators and work on seasonality. Audits must occur during production/harvest, trainings should be held in winter, etc.</td>
</tr>
<tr>
<td></td>
<td>A general schedule for QMS review and audit should be established for future groups implementing the group process. [Next Step 7]</td>
</tr>
<tr>
<td></td>
<td>This may include a “pre-review” of the QMS documents, followed by a full review of QMS in action, and field visits to spot check the consistency of internal audits and other records. Global GAP spot checks the square root of the number of members in the group. For example, in a group of 25 farms, the audits and inspections of five farms would be spot checked.</td>
</tr>
</tbody>
</table>

6.B

<table>
<thead>
<tr>
<th>6.B</th>
<th>USDA AMS performed an assessment of GNFF in July 2011 to see how they were progressing. In August 2011, they provided feedback on the initial verification, providing a number of items identified during the assessment for GNFF to consider and implement.</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA AMS provides audit and delineates corrective action plans as needed.</td>
<td>“Last year we identified two areas to address,” says Diana. “This year, based on USDA’s audit, we identified three areas as continuous improvement points and we</td>
</tr>
<tr>
<td></td>
<td>USDAAMS expectations for corrective action will vary with the severity of the issues discovered. In all instances, sufficient time can be expected to allow any farm or group who wants to reach compliance to do so without the need for a full re-audit.</td>
</tr>
</tbody>
</table>

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
<table>
<thead>
<tr>
<th>Group GAP Implementation Steps *</th>
<th>Good Natured Family Farms Pilot Project Implementation Progress</th>
<th>Notes and Recommendations for Future Group GAP Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>[See Appendices for example checklists.]</td>
<td>will work on them over the winter.” Each community group within GNFF will look at the process and develop a stronger approach to whatever is required, and then the QMR will review and give direction and oversight.</td>
<td></td>
</tr>
</tbody>
</table>

Progress Factor 7: Long Term Maintenance of the QMS and Group GAP Viability

7.A
The USDA’s audit and certification process is reviewed to verify its integrity.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Once in place, USDA’s program must be reviewed regularly by outside parties. Global GAP, for example, has a separate program to ensure that the system’s integrity is demonstrated. In order for buyers and consumers to accept the certification, they must be satisfied of the integrity of the process. [Next Step 9]</th>
</tr>
</thead>
</table>

* These steps, adapted for application to the U.S. GAP model, are sourced from GlobalGAP’s internal document, “Success Factors for Option 2 Implementation” (April 5, 2010), as well as input from USDA AMS, GNFF’s self-assessment, and QMS consultant Michael Wardrip.
Key Lessons

In the last two years, the USDA AMS Group GAP pilot project with GNFF has made significant strides in building a USDA-AMS Group Certification option for GAP certification. This effort is welcomed and eagerly anticipated by the National Good Food Network Food Hub Collaboration and other cooperative groups that recognize the need for a systematized certification process suitable for small and mid-sized local and regional producers, for whom individual farm certification can be burdensome and cost prohibitive.

GlobalGAP’s Option 2 certification offers an existing framework of best practices for the group approach in the global context. The USDA AMS pilot project adapted some of this framework and, with more time and testing, it is hoped that a set of best practices for the U.S. context will eventually emerge. At present, however, it is premature to promote the pilot project’s implementation steps as “best” practices; the program is still in rapid and continuous improvement toward a level of viability that will make it attractive to all members of the produce supply chain, from farmers to aggregators and distributors to retail and food service buyers. In the future, as the Group GAP program comes closer to full development, a best practices guidance document will be a useful tool to support implementation. Through the Implementation Guide and Assessment Tool, this report describes the critical steps involved in successfully implementing a group certification system. Additionally, the report identifies the areas in which there is work yet to be done by those involved in the pilot project as well as by future groups working to meet GAP requirements. These implementation progress factors provide a roadmap for future groups as they make choices about how to implement the group approach in the context of their own farm group.

GNFF continues to improve its group approach to GAP through its QMS. Critical areas for improvement, which it is currently working to address, include the ongoing development and maintenance of the QMS manual, recordkeeping and internal controls, documentation of the roles and credentials of the QMR, and points for continuous improvement that were noted during the USDA AMS audits. As the pilot project continues and GNFF addresses these areas, USDA AMS will also be clarifying its expectations and requirements for certification that must be met to assure GAP implementation on GNFF’s member farms.

Before the Group GAP certification process piloted by USDA AMS can emerge into the supply chain as a working system, critical issues must be addressed at the national level. The shape and scope of food safety training, for both farmers and auditors, is not yet fully defined. The development of the QMS process must be clarified, and further explanation provided on the expected makeup, qualifications, and training of the internal QMS team. Farm groups need technical assistance, financial assistance, and an accepted template for QMS development. And, as more groups attempt the group approach, there will be a growing need for an IT system to be developed to post internal audits so that buyers can be satisfied that their compliance concerns have been addressed. Additionally, the current system lacks an external program to verify the integrity of the certification process. As these issues are addressed and additional pilot projects are implemented, best practices will emerge that demonstrate the merits of the group approach to GAP certification for U.S. farmers. It seems likely that collaboration of multiple entities, agencies, and stakeholders will be needed to support the development and implementation of the USDA AMS Group GAP certification.
Next Steps and Recommendations

As small and mid-sized farms increasingly collaborate to meet growing demand for local and regional food, there is great opportunity and need for an improved and systematized Group GAP self-administration and third party certification process.

By documenting the progress of the pilot project to date, this report describes work accomplished in the creation of a Group GAP system, and it also identifies critical issues yet to be addressed. The following recommendations are offered as next steps to address work yet to be done, in implementation of GAP generally and the group approach to certification.

1. Implementation of Additional Group GAP Certification Pilot Projects
Development of a complete, market ready Group GAP certification program, that will be valuable to all supply chain stakeholders, requires further vetting through additional Group GAP pilot projects. The number of additional pilots will be limited due to financial and human resource constraints, and should be selected to assure that areas of need in overall program development are addressed through experience with these additional groups. Alongside the continuation of GNFF’s Group GAP development, additional pilot groups should be engaged in 2013, with the anticipation of a market ready program that could be rolled out by USDA AMS in 2014.

2. Financing QMS Development and First-Year Audits
For the 2013 pilots, and moving forward from there for future groups, it is important to develop sources of funds to cover the up-front costs for first-year staff and QMS development, and external audits. Possible sources of first year resources include (but are not limited to) grant funders, supply chain stakeholders, or USDA AMS or other USDA programs. As a condition of providing access to first year resources, groups would also understand and agree that the QMS group would develop a plan for program self-sufficiency so that auditing costs in subsequent years would be set aside, for example by an internal assessment of a percentage of the proceeds of sales.

3. QMS Template Provided by USDA AMS
A QMS template is needed for U.S. farmers using the group approach to certification. GlobalGAP’s Kenyan smallholder farmer QMS is a useful resource from which many aspects of the QMS development can be adapted, but it must be re-tooled for the U.S. context. The existing Washington State Tree Fruit Audit QMS, developed by Michael Wardrip, is another resource that could be modified with his assistance to become a generic template for small farm groups. The GNFF QMS could also provide a beginning point for other groups, although it is developmental at this time. USDA AMS will ultimately need to provide or endorse a working template that meets its auditing needs. USDA has not yet determined if it will develop a template for future groups, or if it intends to consider and approve templates produced by other entities.

4. Training for Auditors and Provision of Criteria and Competencies Required
For the pilot project, USDA AMS evaluated internal auditors on a case-by-case basis, but it has not yet established how members of the farm group management team will establish and demonstrate competency and proficiency. USDA AMS will need to develop the minimum acceptance criteria (education, competencies, and training) that meet the needs of its Group GAP. In addition, USDA has yet to determine its role in future training of internal inspectors and auditors.
5. Technical Assistance for QMS Development
Many groups developing a QMS will need to access outside technical assistance in order to support their process. It is not appropriate that they seek assistance from USDA AMS with questions about this implementation step. As an auditing/third part assurance entity, it is imperative that the objectivity of USDA AMS be preserved and protected. This need of entities seeking certification under a Group GAP approach will need to be developed systematically.

6. Development of Timeline, Budget, and Checklists of Benchmarks
For future groups, it would be useful to develop a timeline, budget, and checklist of detailed benchmarks for group GAP implementation and tracking. The Progress Factors Chart can function as a checklist and should be updated and improved on as better and best practices are identified and the QMS Chart, in the Appendices, describe in general the steps to be included in the checklist. Timelines and budgets should also be developed, continuously improved, and offered as opportunities permit.

7. Development of an IT System to Post Internal Audits
With individual GAP certification, each farm is audited and the report can be made available by the auditing entity (in this case, USDA AMS). In a group approach, however, when only some of the farms are spot-checked, the buyer must have a way to be satisfied that the internal audit is robust. For this reason, the internal audit reports should be made available to buyers concerned about different aspects of compliance. If USDA AMS can make the results available, the buyer is then able to follow up with the group for more information. As a larger number of groups and buyers choose group certification, it would be very valuable for USDA AMS or some other third party to create an IT solution that addresses this need, creating access to reports for appropriate parties. This service may raise the cost of audits or result in additional charges.

8. Development of an Integrity Program
GlobalGAP established an “external” integrity program that provides objective verification of the third-party certification process. GlobalGAP’s integrity program is fairly complex, due to the complex nature of the organization and stakeholder roles, USDA AMS needs a simple and reliable method of external review and a system to receive and address complaints about issues in the administration and delivery of QMS audit services. This program could build on whatever external review process currently exists for the GAP audit program.

9. Food Safety Training
There are significant ongoing efforts to develop tools to support consistent food safety training, especially for small and mid-scale, underserved and beginning farmers. The Produce Safety Alliance (a partnership between FDA, USDA, and industry) has been working to develop a uniform GAP curriculum. Additionally, the National Sustainable Agriculture Coalition (NSAC) has led lobbying efforts for training to be grant-funded through the farm bill. The form, scope, and shape of the food safety training solutions are not yet determined, however. This is a concern for both individual and group approaches to GAP.

10. Continued Development of Resources on the Group Approach to GAP
This report provides many resources and links for farm groups interested in implementing the group approach to food safety. The Implementation Guide and Assessment Tool, with progress factors and
recommendations for future groups, offers a preliminary roadmap for developing a Group GAP program. As additional updates and research become available on this process, from USDA AMS and other stakeholders, the NGFN Food Hub Collaboration could function as a clearinghouse for these resources. Forms and templates laying out the specifics of a group GAP program could be added to this “living document” as they become recognized as useful and worthy of recommendation to new groups.
Additional Resources

Kenya Global GAP QMS
This 127-page document serves as the gold-standard example of a QMS Manual and also as a template for smallholder groups seeking to implement and maintain a quality system. Created for a fictional group of Kenyan growers, as a starting point for those developing a group quality manual, the document details the structure and organization of the QMS; responsibilities and tasks; standards for procedures, control points, and compliance; and all records, checklists, and forms to be managed. The manual is a useful reference to understand the structure and necessary elements of a QMS, but it focuses on EUREPGAP standards and thus is of only partial relevance to the U.S. small farm groups.

Global GAP in Thailand: A Success Story
This one-page GlobalGAP document highlights how Option 2 certification has benefited smallholder farmers in Thailand and enabled them to reach previously inaccessible global markets.

Success Factors for Option 2 Implementation
This internal GlobalGAP document identifies 15 steps leading toward successful completion of Option 2 Certification. It identifies challenges and key factors to consider for smallholder farms implementing the process. These steps, adapted for the U.S. GAP context, serve as the basis for this report’s comparative tool to assess QMS process implementation.

GlobalGAP Smallholder Group Certification
This chapter of Private Food Law provides an overview of GlobalGAP certification for smallholder farmers and addresses the challenges and opportunities of this approach in the global context.

Quality Systems Verification Programs: General Policies and Procedures
USDA’s Quality Verification Systems Program (QSVP) rules for identification and traceability outline many concepts for audits and reports that can be applied to a produce group GAP program.

http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELDEV3103479

Innovative Models: Small Grower and Retail Collaborations
This two-part report provides the Good Natured Family Farms history and narrates how a network of small farms united under the GNFF brand to supply a grocery chain with a competitive range of local products. The second half of the report provides the buyer’s perspective.

http://ngfn.org/resources/research-1/innovative-models

USDA GAP Links
Links to USDA Audit Programs, Lists of Participating Companies with Acceptable Audit Programs, USDA GAP and GHP Audit Checklist (PDF and Excel), Information on Harmonized GAP, Additional checklists and resources

http://www.ams.usda.gov/gapghp

ISO 9000
The International Organization for Standardization website offers links to information on QMS standards and development, and the principles of quality management.

http://www.iso.org/iso/iso_9000
Appendices

A. QMS Comparison Chart
B. GNFF GAP Audit Manual for Farmers
D. USDA Global GAP Internal Audit: Standard Operating Procedures for Internal Auditors and Code of Conduct
E. Example Audit Checklists
Appendix A

QMS Comparison Chart
Quality Management System (QMS) Comparison

This chart compares the documentation in three producer-group QMS Manuals, and provides a ranking of the importance of each task, according to USDA AMS. The first section of the chart addresses responsibilities of the producer group, and the second section addresses responsibilities of individual farms within the group. Farmer groups creating their own QMS may use this chart to understand the different components of a QMS and how different groups have documented these elements of the process.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Management structure</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.2.2 Responsibilities and duties</td>
<td></td>
<td>p.5</td>
<td>1</td>
</tr>
<tr>
<td>4.1.2 Record keeping and internal self-inspection</td>
<td>Record Keeping and Internal Self-assessment/Internal Inspection</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.5A Document and Record Control Procedure</td>
<td></td>
<td>pp. 11,14</td>
<td>1</td>
</tr>
<tr>
<td>2.5 Document control</td>
<td></td>
<td>pp. 11,14</td>
<td>1</td>
</tr>
<tr>
<td>2.8A Internal Audit Procedure</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.8 Internal audit/inspection and management review</td>
<td></td>
<td>pp. 6-7</td>
<td>1</td>
</tr>
<tr>
<td>2.5.1A Internal Documents Master List</td>
<td></td>
<td>pp. 11,14</td>
<td>1</td>
</tr>
<tr>
<td>2.5.2A External Documents Master List</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.5.3A Record Master List</td>
<td></td>
<td>pp. 11,14</td>
<td>1</td>
</tr>
<tr>
<td>2.5.4A Documents/Records Issue Register</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.11A Produce Recall Procedure</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.8.4A Corrective Action Procedure</td>
<td></td>
<td>p. 7</td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>2.0 Structure of Internal Quality Management and Control System (ICS)</td>
<td>How To Use This Manual</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.4 Quality Manual</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2.1 Organization brief</td>
<td></td>
<td>p. 3</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Legality (Legal entity)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.2 Administrative structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Training and advice to farmers</td>
<td>Introduction to GLOBALG.A.P.</td>
<td>p. 10</td>
<td>1</td>
</tr>
<tr>
<td>2.3A Procedure for Training</td>
<td></td>
<td>p. 10</td>
<td></td>
</tr>
<tr>
<td>2.2.3 Group overall policy</td>
<td></td>
<td>p. 3</td>
<td></td>
</tr>
<tr>
<td>2.5 Group’s goals</td>
<td></td>
<td>pp. 3-4</td>
<td></td>
</tr>
<tr>
<td>2.9A Traceability Procedure</td>
<td>Traceability for Recall and Withdrawal of Product</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Producer Group Responsibilities - Support Forms

<p>| Orchard Emergency Contact Information | 2 |
| Orchard Emergency Contact Information (Spanish) | 2 | | |
| 4.1.5.2 Fertilizer application records | Fertilizer Application Record | 2 |
| Plant Protection Product Application Record (Spray Record) | | 2 |
| Toilet Sanitation Checklist | | 2 |
| Harvest Log | | 2 |
| 9.1.3B Cleaning Schedule | Harvest Hygiene Cleaning and Inspection sheet | | 2 |
| 2.3.1A Training Attendance Record | Training Attendance Record | p. 10 | 2 |
| 2.3.2A Training Record | | p. 10 | |</p>
<table>
<thead>
<tr>
<th>2.8.4A Corrective Action Report Form</th>
<th>Corrective Action Request Form</th>
<th>p. 9</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8.1A Audit Program Form</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2.8.2A Audit Plan Form</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2.8.1.2A Audit Summary Report</td>
<td>Pit Toilet Inspection Sheet</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>11.2B Waste and Pollution Management</td>
<td>Risk Assessment (and plan) for New Agricultural Sites</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4.1.2B Crop History Record</td>
<td>Planting Log</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3.0B Planting Calendar</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3.1B Seed Variety List</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3.4B Seed Treatment Record</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4.2.3B Crop Rotation Plan</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8.8.15B Stock Inventory</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8.5B Calibration Record</td>
<td>Calibration (Scale, sprayer, spreader)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2.9.1.2A Transport/Vehicle Checklist</td>
<td>Equipment Maintenance</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2.9.1.3A Supplier Evaluation Checklist</td>
<td>Equipment Maintenance</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2.1.4A Farmer Register</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3.0 Sales and Distribution</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2.9.1.3A Supplier Evaluation Checklist</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8.1B Scouting Record</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8.7.3B Farmer MRL Testing Plan</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Producer Group Responsibilities - Job Descriptions

| 0.5 | QMR responsible person | 3 |
4.0	Internal Auditor	3			
4.1.4	Site history and site management				
4.1.4.1	Risk assessment for new agricultural site				
4.1.4.2	Site management				
6.0	Worker health, safety and welfare	Worker Health, Safety and Welfare			
12.5.2B	Personal Protective Equipment Cleaning Procedure				
2.13	Subcontractors/service providers	Subcontractors			
2.13A	Procedure for Sub-Contractors				
2.9.1A	Approved Suppliers/Subcontractor List				
5.0	Waste and pollution management	Waste and Pollution Management, Recycling and Re-use			
5.1	Pollution management plan				
5.2	Waste management				
7.0	Environmental issues	Environmental and conservation			
2.7	Complaints handling	Complaints	pp. 7,9		
2.7A	Complaints Handling Procedure				
2.11	Withdrawal of certified products	Recall / Withdrawal Procedure			
2.10	Sanctioning?	GLOBALG.A.P. Status			
2.10A	Procedure for Sanctions and Appeals				
---	---	---	--------------------------		
2.12 Use of EUREPGAP logo	Logo Use				

Individual Farm Responsibilities - Crop-Based Procedures

<table>
<thead>
<tr>
<th>2.9 Traceability and product segregation</th>
<th>Traceability</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1 Traceability</td>
<td></td>
</tr>
<tr>
<td>4.1.4.3 Crop rotation</td>
<td>Site History and Management: Rotations</td>
</tr>
<tr>
<td></td>
<td>Propagation Material</td>
</tr>
</tbody>
</table>

Individual Farm Responsibilities - Fruit and Vegetable Procedures

<table>
<thead>
<tr>
<th>4.1.4.4 Soil management</th>
<th>Soil Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.5.1 KSHG fertilizer use policies</td>
<td>Fertilizer Use</td>
</tr>
<tr>
<td>4.1.5 Fertilizer usage and storage</td>
<td></td>
</tr>
<tr>
<td>4.1.5.3 Fertilizer application machinery</td>
<td></td>
</tr>
<tr>
<td>4.1.5.4 Fertilizer stores</td>
<td></td>
</tr>
<tr>
<td>7.2.2B Water Management Procedure</td>
<td>Irrigation and Fertigation</td>
</tr>
<tr>
<td>4.1.6.4 Effective ways of irrigating</td>
<td></td>
</tr>
<tr>
<td>4.1.6 Irrigation</td>
<td></td>
</tr>
<tr>
<td>4.1.6.1 Predicting water requirements</td>
<td></td>
</tr>
<tr>
<td>4.1.6.2 Irrigation method</td>
<td></td>
</tr>
<tr>
<td>4.1.6.3 Quality of irrigation water</td>
<td></td>
</tr>
<tr>
<td>4.1.7 Pesticide usage and storage</td>
<td>Integrated Pest Management (IPM)</td>
</tr>
<tr>
<td>4.1.7.1 KSHG pesticide policies</td>
<td></td>
</tr>
<tr>
<td>4.1.7.6 Pesticides stores</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>4.1.7.3 Disposal of empty pesticide containers, surplus pesticide, tank washings and obsolete pesticides</td>
<td></td>
</tr>
<tr>
<td>4.1.7.4 Pesticides application records</td>
<td></td>
</tr>
<tr>
<td>4.1.7.5 Pre-harvest interval</td>
<td></td>
</tr>
<tr>
<td>8.8B Pesticide Preparation and Mixing Procedure</td>
<td></td>
</tr>
<tr>
<td>4.1.7.7 Personal protective equipment</td>
<td>Equipment</td>
</tr>
<tr>
<td>8.5.2B Maintenance and Calibration of Equipment Procedure</td>
<td>Plant Protection Products (PPP)</td>
</tr>
<tr>
<td>4.1.7.2 Sprayer calibration and maintenance</td>
<td></td>
</tr>
<tr>
<td>4.1.3 Choice of variety</td>
<td></td>
</tr>
<tr>
<td>4.0 Processes in KSHG</td>
<td></td>
</tr>
<tr>
<td>4.1 Production</td>
<td></td>
</tr>
<tr>
<td>4.1.9 Collection centres</td>
<td></td>
</tr>
<tr>
<td>8.4.1B Compliance With Pre-Harvest Intervals Procedure</td>
<td>Pre-Harvest</td>
</tr>
<tr>
<td>4.1.8 Harvesting</td>
<td>Harvesting</td>
</tr>
</tbody>
</table>

Individual Farm Responsibilities - Support Procedures

<p>| Bibliography | | |
| Terms and definitions | p. 4 | |
| Use of EUREPGAP Logo, Trademark and Registration Number Procedure | | | |
|---|---|---|---|
| Produce Handling Declaration | Visitor Health / Safety Notification | | |
| 9.1B Harvesting Process Hygiene Procedure | Harvest Hygiene Annual Inspection / Cleaning | | |
| 10.1B Collection Centre Hygiene Procedure | | | |
| 12.2.4B Emergency Procedures | Emergency Procedure – First Aid | | |
| | Emergency Procedure – First Aid (Spanish) | | |
| | Emergency Procedure – Chemical Spill Clean-up | | |
| | Emergency Procedure – Chemical Spill Clean-up (Spanish) | | |
| | Conservation Plan | | |
| | Restriction on Plant Protection Products (chemicals) | | |
| | Export Declaration | | |
| | Hazard Analysis Worksheet for Irrigation and Spray Water | | |
| | Food Safety and Hygiene in The Orchard | | |
| | Risk Analysis Worksheet For Worker Safety and Welfare | | |
| | Pit Toilets Risk Assessment | | |
| | Pit Toilet Procedure | | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Animal Risk Assessment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fertilizer Risk Assessment Worksheet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food Defense Policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6 Record control</td>
<td>Organizing Grower Records – Forms Use Frequency</td>
<td>pp. 11,14</td>
<td></td>
</tr>
<tr>
<td>3.0B Seeds Procurement Procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.7.4B MRL Sampling Procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Farm Responsibilities - Support Forms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.9.1.1A Inputs Checklist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Farm Responsibilities - Job Descriptions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 Production Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 Technical Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0 Agronomist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 Technical Assistant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0 Collection Center Head</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0 Sprayer Operator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Farm Responsibilities - Contracts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.3A Farmer vs. Farmer Group Contract (A guide to drawing a contract)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.3B Farmer Group vs. Service Provider Contract (A guide to drawing a contract)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.3C Farmer Group vs. Exporter Company(s) Contract (A guide to drawing a contract)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

GNFF GAP Audis Manual for Farmers
Good Agricultural Practices (GAP)

GAP Audit Manual
GOOD NATURED FAMILY FARMS ALLAINCE

Table of Contents of GAP Audit Manual

i. Good Natured Family Farms (GNFF) GAP Audit Manual – What is GAP?

1. Introduction and list of reference materials
2. Audit checklist information
3. Overall farm SOP
4. SOP Appendix
5. Maps
6. Documentation
7. Employee signed policy form
8. Current USDA Audit Checklist
9. Miscellaneous
10. Contact Information

This GAP Audit Manual was compiled by Diana Endicott and Otavio Silva utilizing information and templates from Cornell University. We thank Dr. Elizabeth A. Bihn for all guidance she provided during our research and preparation of training and audit materials.
GAP (Good Agricultural Practices)
Good Natured Family Farms (GNFF) GAP Audit Manual

What is GAP?
GNFF has established a program to minimize the possibility of produce products to be implicated in any contamination incidents. It is important for the produce industry and for our producers to be proactive in their demonstration to the consumer of good agricultural (GAP) and good handling practices (GHP). The GAP/GHP Audit Verification Program is a volunteer program designed to assess a farm’s effort to minimize the unintentional microbial or chemical contamination of produce prior to reaching the consumer.

This GNFF GAP Audit Organizational Manual was developed to coordinate your farming operation's standard operating procedures (SOP) of Good Agricultural Practices (GAP) for food and farm safety with the requirements of the USDA GAP Audit Checklist. This manual was designed to simplify the necessary requirements to successfully pass the USDA GAP Audit.

GAP manual layout
This manual includes the following sections: Introduction and references, Audit checklist information, Overall Farm Standard Operating Procedures (SOP), SOP Appendix, Maps, Documentation, Employee signed policy forms (in English and Spanish), Current USDA Audit Checklist and Miscellaneous. The SOP Appendix contains procedures that require documentation but provided in greater detail compared to the Overall SOP. The four USDA Audit sections (scopes) included in the GNFF handbook are: General Questions, Farm Review, Field Harvest and Field Packing Activities, and Storage and Transportation. Not every operation will require all these scopes and some operations may require others not listed in this handbook. The farm/company (auditee) will determine which scopes of the checklist they would like covered. Not all questions in each audit will be applicable to every farm and therefore some questions may be answered "not applicable". A passing score is 80% of the points for applicable questions.

How to use this manual
This material was developed to coordinate your farming operation's standard operating procedures (SOP) of Good Agricultural Practices (GAP) for food and farm safety with the requirements of the USDA GAP Audit Checklist. It is designed to provide a detailed template for a produce farm's SOP that is directly referenced to the USDA Audit Checklist and the required documentation. Each bullet point of the SOP is referenced to the Audit Checklist requirement (eg. G-3, 1-1, 2-1, 4-1) and a document number (eg, D#1), if documentation is required. Examples of preformatted documentation for all mandatory requirements are included. These documents can be downloaded and adjusted to fit an individual operation.

For example, in the SOP:

Potable water is available to all workers. G3, D#1

G3 indicates that this question is found in the General Information section of the Audit and is question 3. D#1 indicates that the appropriate documentation is found in the Document section of the GNFF handbook and is the 1st document. This document also has the reference to G3 on it to make it easier to find what question it pertains to.

Please note that the SOP template included in this manual needs to be customized to your specific farming operation since some points may not be applicable. Within this manual there are sections that include pre-formatted documents, areas to insert maps, and the current USDA Audit Checklist. Please check for current versions of the USDA Audit Checklist frequently at Current USDA Audit Checklist. The most current version is May 11, 2007.
Introduction on how to use this manual

This material was developed to coordinate your farming operation’s standard operating procedures (SOP) of Good Agricultural Practices (GAP) for food and farm safety with the requirements of the USDA GAP Audit Checklist. It is designed to provide a detailed template for a produce farm’s SOP that is directly referenced to the USDA Audit Checklist and the required documentation. Each bullet point of the SOP is referenced to the Audit Checklist requirement (eg. G-3, 1-1, 2-1, 4-1) and a document number (eg, D#1), if documentation is required.

Please note that the SOP template included in this manual needs to be customized to your specific farming operation since some points may not be applicable. Within this manual there are sections that include preformatted documents, areas to insert maps, and the current USDA Audit Checklist.

Please check for current versions of the USDA Audit Checklist frequently at http://www.ams.usda.gov/AMSw1.0/getfile?dDocName=STELPRDC5050869

This manual was designed to simplify the necessary requirements to successfully pass the USDA GAP Audit.

List of websites and educational materials that may be helpful

 - Download the current USDA Audit Checklist
 - View the ‘Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables (The Guide)’
 - GAP Program Informational Brochure

- Good Agricultural Practices Network for Education and Training Cornell University: http://www.gaps.cornell.edu/
 - Order video tapes, guides, pamphlets, signs and other materials to help implement your farm and food safety program
 - Links to additional websites

- Good Agricultural Practices Information:
 - Template for Standard Operating Procedure (SOP) for farm and food safety program
 - Utilize forms for a self-audit of the USDA Audit Checklist
- Missouri State Department of Agriculture, FFV Food Safety Program: http://www.mda.mo.gov/pi/ffvip.htm

- Sysco GAP: http://www.primuslabs.com/fsr/SyscoGAP.html
 - USDA Audit Checklist and fee schedule
 - Primus Labs affiliated audit and fee schedule

- AgriData, Inc.: www.agridatainc.com
 - Maps
 - Custom map-based reports
Contact Information:

- Diana Endicott, Rainbow Organic Farms/Good Natured Family Farms
 Founder and President

 http://goodnated.net
 1976 55th St. Route 1
 Bronson, KS 66716

 913 636-9989, mobile
 620 939-4933, farm
 631 739-0357, fax
 allnatural@ckt.net

- Otavio Silva, Buy Fresh Buy Local Kansas City
 Administrator
 www.foodroutes.org

 13202 West 77th Place
 Lenexa, KS 66216-3014

 816 591-3234, mobile
 413 653-7535, fax
 sustainability2020@kc.rr.com

- Delber (Del) Housworth, Balls Foods
 Central Warehouse Produce Buyer
 www.henhouse.com

 6817 Stadium Dr
 Kansas City, MO 64129

 816 861-0048
 delbert.housworth@BallsFoods.com

- Royce Farr
 Farmer Aggregator and Driver

 660 541-0792
 816-500-4538
 4497
Contact Information:

- **Diana Endicott, Rainbow Organic Farms/Good Natured Family Farms**
 Founder and President

 http://goodnatured.net

 1976 55th St. Route 1
 Bronson, KS 66716

 913 636-9989, mobile
 620 939-4933, farm
 631 739-0357, fax
 airlnatural@ckt.net

- **Otavio Silva, Buy Fresh Buy Local Kansas City**
 Administrator

 www.foodroutes.org

 13202 West 77th Place
 Lenexa, KS 66216-3014

 816 591-3234, mobile
 413 653-7535, fax
 sustainability2020@kc.rr.com

- **Delber (Del) Housworth, Balls Foods**
 Central Warehouse Produce Buyer

 www.henhouse.com

 6817 Stadium Dr
 Kansas City, MO 64129

 816 861-0048
 delbert.housworth@BallsFoods.com

- **Royce Farr**
 Farmer Aggregator and Driver

 660 541-0792
 Roye 816-500-4538
 4497
GAP Audit Checklist Information

Farm information

Farm name: John & Nettie Mast
Owner’s name: John & Nettie Mast
Contact person: Tony Farm - Brad George
Farm address: 4335 50th Ave
Staunton, Mo 64869
Mailing address: 206 Lodge
Contact person phone: 816-520-7538 - Brad George 668-541-1034

GAP and GHP training:

Participated in GAP and/or GHP training: yes or no
If yes, describe*
I attended GAP & GHP meeting in Staunton 1 day,
Session on Feb 24-2009 - 10:30 AM to 2:30PM.
I attended meeting at NW Ingram in produce building May 14, 2009
from 9:30 AM to 12:00 PM.
with Diana Endichi
*examples: Cooperative Extension Service training, professional training or seminars

Farm maps and descriptions:

- Farm map(s) of all produce growing locations must be provided:
Maps are located under the “Maps” tab of this manual

- A legal description of each field is provided: yes or no
If yes, these descriptions are located under the “Maps” tab of this manual

- On-farm produce storage facility maps are provided: yes or no or not applicable. Must be provided if auditing Storage and Transportation-(Part 4).
If yes, these maps are located under the “Maps” tab

- Number of fields in produce: 3

- Are any fields excluded from this audit?: yes or no
If yes, list names and acreage all produce fields are

February 27, 2009
• List names of fields and varieties to be audited:
 - garden onions
 - produce patch
 - zukes
 - yellow squash
 - jalapeno pepper, tomato, cucumber

• Total number of produce acreage: 30 A.

• Total farm acreage (including non-produce crops): 143

• List other crops grown (excluding produce):
 - corn
 - oats
 - split
 - hay
 - pasture
STANDARD OPERATING PROCEDURE FOR
GOOD AGRICULTURAL PRACTICES

[Farm name] has designated [Employee name] to implement and oversee a food safety program that incorporates GAP and/or GHP for this farm.

Worker Health and Hygiene

- Potable water is available to all workers. Documentation is attached.
 - G3
 - D#1

- All employees have been trained and are required to follow proper sanitation and hygiene practices. Employee name, date of training, and training method are documented. An employee signed policy form is attached. Follow-up training will be provided if necessary.
 - G4, G6
 - D#2 D#3

- Readily understandable signs are posted in appropriate areas to instruct employees and visitors to wash their hands before beginning or returning to work (including all breaks, lunch and restroom use), or when their hands have been contaminated.
 - G5

- Readily understandable signs are posted in appropriate areas to instruct employees and visitors to follow proper sanitation and hygiene.
 - G7, G8

- All toilet/restroom/field sanitation are serviced and cleaned on a scheduled basis. They are properly supplied with single use paper towel, toilet paper, and hand soap or anti-bacterial soap and potable water for hand washing.
 - G9
 - G10
 - D#4

- Eating, drinking, chewing gum and tobacco use are confined to designated areas separate from where produce are handled. Bottled water is allowed provided it is stored in closed plastic containers away from the product flow when not being used.
 - G11

- Workers with flu-like symptoms or open wounds, or infectious conditions are prohibited from handling produce.
 - G12
 - D#5

February 27, 2009
Worker Health and Hygiene (continued)

- A written policy is in place whereby produce that have come in contact with blood or other body fluids will be disposed using the most appropriate method for the situation (e.g. buried, burned, etc.). Equipment surfaces that have come into contact with blood or other body fluids will be cleaned and disinfected with bleach or other safe disinfectant.

- First aid kits are identified, checked and restocked on a regular basis. All employees are instructed to seek prompt treatment with clean first aid supplies for cuts, abrasions, and other injuries. Workers are instructed to report any injuries to their supervisors and will be documented in the illness/injury reporting log.

- Any pesticide, fertilizer, or nutrient applied in the production of the produce crop will be documented and kept on file. Company personnel applying regulated materials must have name and pesticide license recorded and on file.
Farm Review

Water Usage

- The farm operator is knowledgeable of the irrigation water source and application method(s).
- Water quality is documented to be adequate for chemical application and fertigation method.
- Measures are used to restrict irrigation water sources from livestock, wildlife, and other potential pollution sources as needed.

Sewage Treatment

- The farm sewage treatment system/septic system is functioning properly and there is no evidence of leaking or runoff.
- There is no municipal/commercial sewage treatment facility or waste material landfill adjacent to the farm.

Animals/Wildlife/Livestock

- Controls are in place to decrease contamination of agricultural water and soil from other farm or animal operations.
- Manure lagoons located near or adjacent to produce production areas are maintained to prevent leaking or overflowing, or measures have been taken to stop runoff from contaminating the produce production areas.
- All reasonable effort is made to keep domestic and wild animals away from water used for irrigation and the produce production area. Presence or non-presentation is monitored and documented.

Manure and Municipal Biosolids

A. The farm operation will choose one of the following:
 A. This farming operation applies raw manure or a combination of raw and composted manure as a soil amendment, complete 1-14 through 1-17.
 B. This farming operation applies only composted manure/treated municipal biosolids as a soil amendment, complete 1-18 through 1-21.
Farm Review (continued)

C. If this farming operation applies no manure or municipal biosolids of any kind, go to 1-22. This farm declines to use raw animal manure, composted manure or municipal biosolids, skip sections 1-14 to 1-21

Option A: Raw Manure

A. If this farming operation applies raw manure or a combination of raw and composted manure as a soil amendment it is incorporated immediately at least 2 weeks prior to planting or a minimum of 120 days prior to harvest. 1-14, D#10

A. Raw manure is not used on commodities that are harvested within 120 days of planting. 1-15

A. If a combination of raw and treated manure is used, the treated manure is properly treated, composted or exposed to reduce the expected levels of pathogens. 1-16, D#11

A. Untreated manure is properly stored prior to use. 1-17

Option B: Composted Manure

B. If farm uses only composted manure and/or treated biosolids as a soil amendment, it will be properly treated, composted, or exposed to environmental conditions that would lower the expected level of pathogens. Aged manure is not considered compost. Proper composting methods are described in the SOP appendix. 1-18, 1-19, D#11, A#1

B. Composted manure and/or treated biosolids are properly stored and are protected to minimize recontamination. 1-20

Option C: No Manure/Biosolids

C. This farming operation applies no manure or municipal biosolids of any kind. 1-22

Soils

- All attempts have been made to acquire previous land use history to minimize the risk of produce contamination. If previous land use history indicates a potential for contamination action will be made to mitigate the contamination or the field will not be used for crop production. If flooding occurred in the crop production areas, soils are tested for potential microbial hazards. 1-23, 1-24, 1-25, D#12
Field Harvest and Field Packing Activities

Worker Sanitation and Hygiene

- This farming operation will comply with all applicable state and/or federal regulations dictating the number, condition, and placement of portable field sanitation units. If the number of employees does not require a portable field sanitation unit, access to a clean toilet facility is readily available for all employees.

- Portable field sanitation units are located such that they minimize the risk for product contamination and yet are easily accessible for service, clean up and response teams. If a portable toilet is tipped over, damaged or leaking it will be fixed or replaced and contaminated soil around it will be removed.

Field Harvesting and Transportation

- All harvesting containers (including bulk hauling vehicles) as well as hand harvesting implements that come in direct contact with harvested produce are cleaned and/or sanitized prior to use and kept as clean as practical.

- All containers, equipment and/or machinery will be in good repair and any damaged containers or equipment will be properly repaired or disposed.

- Harvesting equipment containing light bulbs and/or glass will be protected to avoid produce or field contamination in case of breakage.

- If there is a glass, plastic breakage or any other source of contamination (chemical, petroleum, pesticide) during the harvesting operation the following action will be implemented
 - Supervisor is contacted
 - Produce contaminated will be disposed of and field area avoided
 - Equipment will be cleaned and inspected after contamination.

- This farming operation instructs all employees to inspect and remove foreign objects such as glass, golf balls, metal, rocks, or other dangerous/toxic items. Other means to remove potential contaminants may include use of specialized equipment.

- All harvesting containers will be used solely for the carrying or storage of the intended crop (produce) and non-produce items will not be allowed in these containers during the harvest season.

- If a post-harvest aqueous solution is applied to the harvested produce, the water utilized will be potable.
Field Harvest and Field Packing Activities (continued)

- Manual and mechanical effort will be made to remove excessive soil and/or mud from harvested produce and/or containers during harvest.

- Transportation equipment used to move produce from field to storage areas or storage areas to processing plant which comes into contact with product is clean, in good repair and covered. To achieve points on question 2-17 all loads must be covered.
Storage and Transportation

Product, Containers and Pallets

- Pallets, pallet boxes, totes, bags, bins, cellars, storage rooms, etc., are clean, and inspected to not contribute foreign material to the product. All attempts are made to protect these containers or areas from contamination (birds, rodents and other pests, etc.). 4-1, 4-2 4-4

- If produce need to be stored outside they are covered and protected from contamination. 4-3

- Non-food grade substances such as paints, lubricants, pesticides, etc., will not be stored in close proximity to the harvested produce. 4-6

- All mechanical equipment used within the storage facility is clean and maintained to prevent contamination of the harvested produce. 4-7

- There is an established pest control program for the facility that includes measures to exclude animals or pests from storage facilities. Service reports for the program are available for review. A description of the program is in the SOP appendix. Maps of rodent bait and trap locations are in the map section. 4-8 4-9 4-10 D#19 A#2

- The storage facility is well maintained to minimize major cracks and crevices. 4-11

- If cooling water or ice is necessary it must be potable. Manufacturing, storage and transportation facilities used in making and delivering ice used for cooling the product have been sanitized. 4-12 4-13 D#20

Storage/Temperature Control

- The storage facility is cleaned and maintained in an orderly manner. A floor plan/map of each storage facility is located in the map section. Refrigeration system is working properly and storage temperature logs are maintained. Thermometer(s) are calibrated and records are available. A calibration method is available in the SOP Appendix. 4-14, 4-15 4-16, 4-17 D#18, D#21 A#3

- Prior to the loading and unloading process, conveyor and other handling equipment will be clean, in good physical condition, free from disagreeable odors and from obvious dirt and/or debris. Cleaning procedures for equipment is in the SOP appendix. 4-18 D#22 A#4
Storage and Transportation (continued)

- All effort will be made to ensure minimal damage to the harvested produce during handling and transportation. The harvested produce will not be handled or transported with potentially contaminating products. Proper transportation temperatures will be documented if necessary.
Composting Practices
For producers desiring to compost manure

There are two general practices recognized by the USDA for treating manure to make it safer than raw manure. The first is passive treatments, the second is active treatments.

Passive treatment practices
Passive treatment, or aging, relies on the passage of time and environmental factors to reduce pathogens in the manure.
1. The manure is piled and allowed to age.
2. The internal temperatures of piled manure will increase initially, but as oxygen and moisture are quickly depleted, the temperatures drop. In order to kill pathogens and weed seeds, manure must be held at a minimum of 131°F for 14 days. During this time, the outsides of the pile will never reach that temperature. Pathogens may be killed with the passage of time through drying and ultra violet irradiation. Weed seeds, especially on the outside of the pile, will not be destroyed.
 It will be very difficult, if not impossible, to document that the resulting product has reached the proper temperature for the proper amount of time as required by section 1-19 of the audit.

Active treatment practices
1. Manure that is to become compost must be turned frequently to maintain proper oxygen and moisture levels, and to ensure the entire amount of material is heated properly to destroy pathogens and weed seed.
2. After piling, a carbon source such as straw will need to be added to and mixed with raw manure to maintain an ideal Carbon:Nitrogen (C:N) Ratio of 25-30:1.
3. The temperature will rise and will need to be maintained at over 131°F for 14 days to destroy pathogens and weed seeds.
4. During this time, the pile will need to be mixed or aerated to maintain proper oxygenation and to ensure the entire pile is exposed to the high temperatures.
5. The recommended procedure is to follow the process known as Procedure to Further Reduce Pathogens (PFRP).
 - The pile is created, let heat for 3 days, and then turned.
 - Subsequent turnings are done every three days for a total of 5 turnings.
 - In order to comply with Section 1-21, it will be necessary to have a composting procedure and document pile temperatures and moisture content, as well as turning dates.
 - This documentation will be referred to as a time/temperature log. See next page.

February 27, 2009
Time/Temp Log for Compost

<table>
<thead>
<tr>
<th>Row #</th>
<th>Date Piled</th>
<th>Date Turned</th>
<th>Time</th>
<th>Temp Test Area 1</th>
<th>Temp Test Area 2</th>
<th>Temp Test Area 3</th>
<th>Temp Test Area 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In order to meet the standards for Process to Further Reduce Pathogens (PFRP), compost material must be maintained at or above 131 degrees Fahrenheit for 14 days. Be sure to sample the pile in four test areas to assure proper temperature throughout. The pile must be turned every three days for a total of 5 turnings.

February 27, 2009
Storage Pest Management Program

A rodent and bird control program has been implemented at this storage facility.

1. If rodent traps are placed inside the storage facility, only spring-loaded style traps will be used.

2. No bait traps will be used inside the storage facility. Bait traps may be used outside the storage facility only.

3. All traps will be checked frequently and bait traps will be restocked with bait when necessary. Traps will be located in several areas inside and outside around the facility.

4. If appropriate, chicken wire or netting will be used over the air intake door and exhaust louvers to help prevent birds from entering the storage facility.
Thermometer Calibration

Melting point of ice method

1. Place ice in a container and allow melting to begin.

2. Stir to insure the temperature in the ice/water mixture is uniform throughout the container.

3. When the container is filled with a 50/50 ice and water solution, insert the thermometer and wait until the temperature stabilizes.

4. If the thermometer is properly calibrated it should read 32°F (0°C).

5. If the thermometer is not reading 32°F (0°C), adjust the thermometer (if possible), use the temperature difference to adjust for the readings, or replace the thermometer.

Avoid adding tap water to the ice (to obtain the 50/50 mixture) because the mixture will not be 32°F (0°C) rather at a higher temperature. The calibration will be more accurate if ice is used.

Reference:

Storage and Equipment Cleaning Procedures

General instructions for cleaning and disinfecting a produce storage and/or equipment:

1. Remove all plant and produce debris from the storage floor, plenum, duct pipes and/or from equipment used for production and handling.

2. Remove the top 1 to 2 inches of dirt floor and replace with soil not associated with produce production.

3. Thoroughly wash all components of the storage facility and/or equipment with soap and water or steam using a high-pressure sprayer and then rinse.

4. Use an appropriate, registered, and labeled disinfectant for your storage. Contact local suppliers or the Idaho State Department of Agriculture for an updated list of registered disinfectants.

5. When disinfecting, make sure the sprayer pressure and volume are sufficient to effectively clean all surfaces. Wet all surfaces thoroughly and allow the disinfectant to remain on the surfaces for at least 10-15 minutes to be fully effective.

6. Make sure to thoroughly clean the inside of duct pipes.

7. Close up the storage facility for 2 weeks for maximum disinfectant effectiveness and then open the facility, allowing all surfaces to dry.

8. Follow label and supplemental label instructions or hire a professional applicator.

9. Remember, storage and/or equipment cleaning and disinfecting are critical components of good produce storage management.
Appendix C

Good Natured Family Farms

Group Good Agriculture Procedures and Good Handling Procedures Program

Global GAP Pilot Project
Internal Audit Manual

July 2012
Good Natured Family Farms

Group Good Agriculture Procedures and Good Handling Procedures Program

Global GAP Internal Audit Manual

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Requirements</td>
<td>3</td>
</tr>
<tr>
<td>1. Purpose</td>
<td>4</td>
</tr>
<tr>
<td>2. GNFF Internal Auditor Responsibilities</td>
<td>5</td>
</tr>
<tr>
<td>3. Non Conformance</td>
<td>7</td>
</tr>
<tr>
<td>4. GNFF GAP/GHP Producers Training for Alliance Farms</td>
<td>9</td>
</tr>
<tr>
<td>6. External Audits</td>
<td>10</td>
</tr>
<tr>
<td>7. Program Guidelines</td>
<td>11</td>
</tr>
<tr>
<td>8. Internal Auditor Qualifications</td>
<td>12</td>
</tr>
<tr>
<td>9. Reference Documents</td>
<td>13</td>
</tr>
</tbody>
</table>
Good Natured Family Farms

Group Good Agriculture Procedures and Good Handling Procedures Program

Quality Assurance Quality Control Manual

General Requirements:

The Good Natured Family Farms (GNFF) Group Good Agriculture Procedures and Good Handling Procedures (GAP/GHP) Program addresses the constant challenge for alliance’s fruits and vegetables producers members to grow healthy products safely and responsibly. Increased pressures from consumers, retailers and legislation have placed new demands on growers and farmers. Farmers and growers are required more and more to use production techniques that reduce the impact of farming on the environment, to reduce their use of chemicals, and to make efficient use of natural resources, while safeguarding the welfare of both workers and farm animals. Since its inception GNFF has been able to demonstrate a commitment to good agricultural farming practices which – nowadays, has become essential for accessing the market, particularly the local food market.

GNFF has adopted in its good agricultural farming practices the W. K. Kellogg Foundation’s definition for good food: healthy, green, fair and affordable. Good food that is:

- Healthy- promotes the physical, mental and spiritual well-being of individuals, families and communities.
- Green- produced in a manner which maintains or improves the quality of land, water, air and other ecological factors.
- Fair- minimizes the chance that anyone along the production line was exploited for its creation.
- Affordable- priced so that people of all socioeconomic backgrounds are able to purchase it and have access to it.

GNFF also has adopted the US Department of Agriculture’ Agriculture Marketing Services Group Good Agriculture Procedures and Good Handling Procedures Audit Program, and developed its own program hereby outlined.

GNFF Group Good Agriculture Procedures and Good Handling Procedures Audit Program insures the overall extraordinary intention of small local family farms to assure food safety from farm to retailer. GNFF’s Group GAP/GHP program demonstrates to customers (retailers, food services providers and consumers) that GNFF products are grown utilizing good agricultural farming practices. The Group GAP/GHP program inspires consumer confidence, ensures access to new markets and enhances operating efficiency and competitive market appeal. Furthermore, the Group GAP/GHP program creates opportunities for implement processes for continual improvement; and quite importantly reduces the number of second party audit or inspections to farms.
1. Purpose:

1.1 This document outlines the general requirements of the GNFF Group Good Agriculture Procedures and Good Handling Procedures.

1.2 The specific GNFF/USDA Group GAP/GHP program requirements must be met through an approved GNFF Group GAP/GHP Internal Audit Program.

1.3 The requirements of the GNFF Group GAP/GHP Internal Audit Program are defined in USDA Group GAP/GHP Audit Program.

1.4 The USDA Group GAP/GHP Audit Program ensures that the specific program requirements are supported by a documented USDA Group GAP/GHP Audit checklist. The USDA Group GAP/GHP Audit Program is a voluntary, user-fee audit program.

1.5 The USDA Group GAP/GHP Audit Program is available to GNFF alliance members. Services are provided by GNFF and USDA AMS Group GAP/GHP Audit Program.

2. Definitions:

2.1 Approved Internal Auditor: Any internal auditor or auditing entity meeting all requirements of the GNFF Group Good Agriculture Procedures and Good Handling program deems internal auditors approved who work under an approved documented program that addresses the requirements of USDA AMS GAP/GHP Audit Program and upon successful completion of an audit by USDA or by USDA, AMS Recognized Auditors.

2.2 Approval Auditor Authority: USDA-AMS Group GAP/GHP Audit Program will have the authority to approve, deny or suspend approval in accordance with the USDA-AMS Group GAP/GHP Audit Program guidelines.

2.3 Internal Auditor Conflict of Interest
No direct buyer may conduct internal audit. Direct procurement is defined as a buyer purchasing directly from a producer or a distribution or packing facility

2.4 Internal Auditor Proficiency Testing: Approved Internal Auditor must have a professional background in the food industry or related audit experience, must satisfactorily complete Cornell University GAP/GHP training program, and participate – as an observer, on at least ten (10) audits with a lead approved auditor. Furthermore, the approved internal auditor must conduct ten (10) audits under the supervision of a lead approved auditor.
Standard Operating Procedures for
GNFF USDA/AMS GAP/GHP Internal Audits

3. **GNFF Internal Auditor Responsibilities:**

GNFF Internal Auditor must follow the policies and procedures outlined in the *Procedure, GNFF Quality GAP Verification Programs General Policies and Procedures*, in addition to the following:

3.1 GNFF Internal Auditor must conduct an internal audit annually and supply the results of internal audit to GNFF project director who will compile the group results and submit to the USDA Agriculture Marketing Services, prior to its anniversary date listed on the USDA web site.

3.2 Internal auditors must review all relevant, appropriate and applicable activities within the scope of the USDA Group GAP/GHP Audit Program as agreement between USDA AMS and GNFF. Internal Auditor can be performed by the GNFF internal auditor or be form an approved outside agency.

3.1 Staying current on USDA GAP audit check list and score sheet.

3.2 Completing a minimum of one continuing education class, conference, or workshop on food safety.

3.3 Abide by “**GNFF Internal Audit On-Farm Guidance and Code of Conduct**” attached.

3.3 If announced, notifying the farm operator, to determine farm location and date and time of the audit.

3.4. It is the internal auditors’ responsibility to make sure that the farm is in production and/or processing of the products being requested for certification.

3.5 If an internal auditor has questions, contact one of the GNFF project directors and/or USDA AMS GAP/GHP for clarification.

3.6 **GNFF internal auditor credential and training must be in accordance with the proficiency testing set above on Definitions section of this document.**

4. **Who conducts the internal audit?**

4.1 GNFF will appoint qualified internal auditors to conduct comprehensive Group GAP/GHP on all members of the GNFF alliance.

4.2 Internal auditors will meet the requirements as established by GNFF and approved by USDA AMS GAP/GHP defined in 3.0 – 3.6.
4.3 Internal Auditor Conflict of Interest
No direct buyer may conduct internal audit. Direct procurement is defined as a buyer purchasing directly from a producer or a distribution or packing facility.

4.4 See list below of GNFF Internal Auditors and Qualifications for 2011 - 2012

5. How are the internal auditors trained?

5.1 Internal auditor will:
a. have a background in the food safety industry, or related science or agriculture field.
b. or a background as an experienced auditor in a related field.
c. complete Cornell University GAP/GHP on-line training program as soon as it is available for enrollment
d. participate – as an observer on a minimum of (3) audits with a lead approved auditor.
e. approved internal auditor must conduct ten (3) audits under the supervision of a lead approved auditor.

List location and dates of internal auditor training:

Diana Endicott – Kansas State University HACCP Certification – 2007
Diana Endicott – Cornell University GAP/GHP on-line training – spring 2008
Diana Endicott – Attended all farmer training workshops (see farmer training list)

Otavio did not participate in 2012 audits.
Otavio Silva – Certified Environmental Auditor
Otavio Silva - Cornell University GAP/GHP on-line training – spring 2008
Otavio Silva – Attended all farmer training workshops (see farmer training list)

Chris Shea – GAP Training July 2010 and May 2011
Chris Shea - Cornell University GAP/GHP on-line training – Summer 2011

Delbert Housworth - GAP Training April 20, 2007; May 16, 2008; March 5 2009; July 2010; May 2011
Delbert Housworth – Food Serv Certified

Kristina Bridges – PhD Microbiology, Graduate classes in health and nutrition
Kristina Bridges - Completed required training under lead auditor

Tony Schwager – BS in Agriculture and MS in Agriculture Economics
Tony Schwager = Completed required training under lead auditor

5. How are internal audits conducted?

5.1 GNFF auditor will conduct internal Group GAP/GHP once a year on the members of GNFF alliance utilizing the most current USDA Audit Verification Checklist Spreadsheet.
5.2 The farm will be actively producing and processing the product(s) identified for USDA GAP certification.

5.3 The internal auditor will conduct a comprehensive audit of each participating farm and evaluate them based on the USDA AMS GAP/GHP Audit and corresponding score sheet.

5.4 Additional audits (announced and/or unannounced) may be warranted and conducted randomly by internal auditors.

5.5 Internal Auditors will follow internal auditor responsibilities as outlined in 3.0 – 3.6.

5.6 The USDA AMS GAP/GHP 2011 Audit Check List will be used to conduct internal audits. See Attached.

4. Corrective Action – Non-Conformity Issues

4.1 GNFF internal auditor will utilize USDA GAP/GHP non conformance form as guideline to address non-conformity issues.

4.2 GNFF internal auditor will identify non-conformity issues and provide guidance for mitigating and/or correcting the issue.

4.3 A notice of non-conformance will be delivered in writing to the farmer and require a time response in accordance to severity of the non-conformance issue.

4.4 GNFF internal auditors will require from the farmer a corrective action plan to correct deficiencies encountered during the internal audit and request the farmer to provided a timetable to address all deficiencies.
This blank page will not delete continue to scroll down
Non Conformance Record

A non conformance record is used to determine whether operations are in compliance. It is used to document corrective actions and preventative actions.

1. Date ___________________ 2. Record No. ____________ 3. Address of Operation ________________________________
4. Name and Title ____________________________ 5. Personnel Notified______________________________
6. RELEVANT REGULATION(S) ______________________
7. SECTION or PAGE OF OPERATION MANUAL PROCEDURE or PROCESS PLAN ________________________________
8. CODE (if applies) ________________ 9. NONCOMPLIANCE CLASSIFICATION INDICATORS ________________
10. DESCRIPTION OF NONCOMPLIANCE:

11. SIGNATURE OF AUDITOR ________________________________

You are hereby advised of your right to appeal this decision.
12. FARM OR PLANT MANAGEMENT RESPONSE: (Immediate CORRECTIVE action(s)):

13. FARM OR PLANT MANAGEMENT RESPONSE: (Further planned PREVENTATIVE action(s)):

This document serves as written notification of your failure to comply with regulatory requirement(s) could result in additional regulatory or administrative action.

(Signature of FARM OR PLANT OWNER OR PERSON IN CHARGE) ________________________________

(Signature of AUDITOR) ________________________________
GAP/GHP Grower-Producers Training for Alliance Members:

5. GNFF GAP/GHP Producers Training for Alliance Farms:
GNFF has implemented a comprehensive GAP/GHP training for members of the GNFF alliance. Each alliance farm must become GAP/GHP certified to keep a good standing as alliance member. Each farm member of GNFF alliance must have an initial comprehensive GAP/GHP training. Refresher GAP/GHP training will be conducted annually. Each individual farmers is responsible for preparing and maintaining his/hers GAP/GHP Farm Notebook in accordance with GNFF GAP/GHP Manual and USDA AMS GAP/GHP requirements.

GNFF internal auditor will conduct annually audits of each farm alliance member. USDA AMS GAP program auditors will conduct an audit of GNFF in accordance to Group GAP/GHP Program and will randomly select farms to perform full audits in x% of the total participating alliance members.

A list of all producers trained in GNFF GAP program is kept on file. See Attachment 02 for the list of the latest training.

GAP Training Workshops:
- April 20, 2007
- May 16, 2008
- March 5 2009
- July 2010
- May 2011
- 2012 ??
How are Documents and Records Controlled (Master Copy)?

Location of Hard Copy Rainbow Organic Farms 1976 55th Street Bronson, KS 66716

Computer electronic copy Rainbow Organic Farms 1976 55th Street Bronson, KS 66716

List of Controlled Documents and Records -

1. Copy of one sample notebook from each community
2. Copy of all internal audits scanned in electronic form
3. Copy of all internal audit results scanned in electronic form
4. Copy of names and locations of each farm in the group GAP in electronic form
5. Copy of all nonconformances issued and corrective and preventative measures take to correct NC in electronic form
6. Copy of updated internal audit manual in electronic form
USDA/AMS GAP/GHP External Audits:

4. External Audits
4.1 GNFF Group GAP/GHP Audit Program is audited at least every two (2) years. More frequent audits may be conducted if either numerous minor non-conformances or a major nonconformance are identified during an audit.

4.2 External Audits are conducted by the USDA AMS Group GAP/GHP Audit Program.

NFF GAP/GHP Program Guidelines:

6. Program Guidelines
Program Guidelines were developed by GNFF Founder/President and Sustainability Director in close coordination with USDA Group GAP/GHP Audit Program staff. Future changes to these programs will occur as necessary.

GNFF will maintain complete records demonstrating conformance with the **GNFF Group Good Agriculture Procedures and Good Handling Procedures Program**. Records should be maintained for a minimum of two (2) years.

GNFF will notify the USDA Agriculture Marketing Services of any significant changes in the **GNFF Group Good Agriculture Procedures and Good Handling Procedures Program**. Depending on the nature of the significant change, it may be subject to approval prior to implementation.
GNFF Internal Auditor Qualifications:

On-training internal auditors will only independently conduct audit after fulfilling their training requirements. At no circumstances an on-training internal auditor will alone conduct an audit without being supervised by a lead auditor. Attachment 9 provides background and qualifications for GNFF Internal Auditors.

GNFF Designated Internal Auditors for 2011 – 2012

GNFF has identified the following personnel as lead internal auditors:
- Diana Endicott
- Otavio Silva
- Del Housworth

GNFF has also identified the following personnel as on-training internal auditors:
- Chris Shea
- Tony Schwager
- Kristina Bridges
4 Reference Documents
GNFF has developed a series of documents instrumental to provide quality assurance and quality control while conducting internal audits. Most importantly, GNFF internal auditors utilize the same tools (the most recent USDA Audit Verification Checklist Spreadsheet) used by the USDA GAP/GHP auditors to insure the same criteria while evaluating a farm under this program.

The following documents are used and/or review by GNFF internal auditors:
2.4.1 GNFF Group Good Agriculture Procedures and Good Handling Training Manual
2.4.2 GNFF Group Good Agriculture Procedures and Good Handling Standard Operating Procedure
For Internal Auditors
2.4.3 Current USDA Audit Verification Checklist Spreadsheet
2.4.4 GNFF Group GAP/GHP Visit Verification
2.4.5 Non-Conformance Form
2.4.6 GNFF GAP/GHP Farmer Notebook

2.5 Program Documentation
Reference documents (2.4.1 thru 2.4.5) and records prepared and maintained by GNFF that describe and record the relevant procedures that conform to the internal audit requirements are maintained for two years. This documentation are in the form of a well-defined quality manual, including controlled program documents and records that meet all program requirements. GNFF GAP/GHP Farmer Notebook will be prepared and maintained by each farmer.

Program documentation hard-copies and electronic files are kept in controlled locations. Files are stored at Rainbow Organic Farms located in Bronson, KS; and at the home office of Otavio Silva - GNFF Internal GAP Lead Auditor located in Lenexa, KS.

GNFF GAP/GHP Farmer Notebook are maintained and stored by each farmer at their farms.
Appendix D

USDA Global GAP Internal Audit: Standard Operating Procedures for Internal Auditors and Code of Conduct
USDA GLOBAL GAP
INTERNAL AUDIT

Standard Operating Procedure
For Internal Auditors

Ten Step Process:

1. Arrive at farm leader's location.

2. All internal auditors will conduct a sample audit at this farm. This will help ensure that all auditors conduct the audit in as close of manner as possible.

3. The internal audits will pair off and conduct the next assigned audit. Again this will help to establish consistency between the internal auditors so that all farms are audited equally.

4. The internal auditors will then be assigned individual farms to audit.

5. The farm owner will have the farm GAP Notebook ready for review.

6. The internal auditor will go over the USDA GAP audit check list with the farm owner.

7. The internal auditor will audit each section and then review the section with the farm owner before moving to the next session.

8. The internal auditor is also an educator and will make sure the farmer understands any deficiencies and how to correct the deficiency before moving to the next section.

9. After all sections are complete. The internal auditor will add up the total points. The internal auditor will explain the scoring and score to the farm owner.

10. The internal auditor will provide a summary, highlight areas of greatest concern, and answer all questions.
CODE OF CONDUCT:
Responsibility of the Internal Auditor:

1. Dress appropriately for the farm and weather.
2. No smoking, foul language, or inappropriate behavior.
3. Conduct themselves as an educator as well as an auditor.
4. Remember that we are their guest.
5. Complement as well as note deficiencies.
6. Make sure they understand what you are saying and have the opportunity to ask questions at the time rather than later in the audit.
7. Be encouraging not critical.
8. If there is a problem, contact another auditor immediately.

CODE OF CONDUCT:
Responsibility of the Farm Owner:

1. Be welcoming and hospitable.
2. Understand we are only there to help. We are not getting paid or reimbursed for our time in any manner.
3. Allocate sufficient time without distractions so as the auditor can complete the internal audit in a timely manner.
4. If you feel uncomfortable with the auditor, please notify the lead auditor immediately. If you have problems with the auditor address it directly to the individual, not with gossip later.
5. Respect the auditor in the same manner as they respect you.

I have read and agree to the above responsibility and code of conduct:

Internal Auditor Signature & Date

Farm Owner Signature & Date
Appendix E

Example Audit Checklists
Initial sensitization

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Timeline</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has the group management clearly understood the steps, cost and time commitment required for implementation and certification?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Does the group have enough financial competency or external financial support identified?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Does the group have a valid reason to be certified? Will the certification benefit the group?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Does the group have enough members opting for certification to justify the cost of implementation and certification?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Will the group be able to stay certified in the long run?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

A checklist for monitoring the implementation process does not need to be as detailed as a GLOBALG.A.P Checklist. It should be a simple one-page sheet that a person can fill out very quickly. The purpose is not to conduct a thorough internal inspection on the state of the farms or the farmer group, but to monitor the degree of implementation to see whether the group can move on to the next step or not. For example, by using a simple checklist of a table of content the development of the Quality Manual can be monitored. Whether the content of the Quality Manual meets the standard or not will need to be evaluated carefully during the internal audit. See below a checklist on the table of content of a Quality Manual.

Quality Management System Manual Development

<table>
<thead>
<tr>
<th>Content</th>
<th>Timeline</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract document template</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Contract signed by members</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Farmer register completed</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Membership application procedure</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Management structure</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Responsibilities and qualifications of personnel</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Document and record control</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Internal audits and inspections</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Complaint handling</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Traceability</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sanctions</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>